@ _IcB

V Institut fur Informatik und
Wirtschaftsinformatik

Ulrich Frank, Monika Kaczmarek-Hef3, Sybren de Kinderen

IT Infrastructure Modeling Language

(ITML): A DSML for Supporting IT

Management

|ICB-Research Report
No. 72

Open-Minded December 2021

Die Forschungsberichte des Instituts fiir Infor- The ICB Research Reports comprise preliminary
matik und Wirtschaftsinformatik stellen vorldufi- results, which will usually be revised for subse-
ge Ergebnisse dar, die i. d. R. noch fiir spétere Ver- quent publications. Critical comments would be
offentlichungen iiberarbeitet werden. Daher sind appreciated by the authors.

die Autoren fiir kritische Hinweise dankbar.

Die durch das Urheberrecht begriindeten Rechte, All rights reserved. No part of this report may be
insbesondere der Ubersetzung, des Nachdruckes, reproduced by any means, or translated.

des Vortrags, der Vervielfdltigung, der Weit-

ergabe, der Verdnderung und der Entnahme

von Abbildungen und Tabellen — auch bei

auszugsweiser Verwertung — bleiben vorbehal-

ten.
Authors’ Address: ICB Research Reports
Edited by:
Ulrich Frank, Monika Kaczmarek-Hef, Prof. Dr. Frederik Ahlemann
Sybren de Kinderen Prof. Dr. Fabian Beck
University of Duisburg-Essen Prof. Dr. Torsten Brinda
Institute for Computer Science Prof. Dr. Peter Chamoni
and Business Informatics Prof. Dr. Lucas Davi
Universitétsstr. 9, 45141 Essen, Germany Prof. Dr. Klaus Echtle
Prof. Dr. Stefan Eicker
{ulrich.frank|monika.kaczmarek-hess| Prof. Dr. Ulrich Frank
sybren.dekinderen }@uni-due.de Prof. Dr. Michael Goedicke
Prof. Dr. Volker Gruhn
Prof. Dr. Tobias Kollmann
Prof. Dr. Pedro José Marrén
Prof. Dr. Klaus Pohl
Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Stefan Schneegaf3
Prof. Dr. Reinhard Schiitte
Prof. Dr. Stefan Stieglitz
Contact:

Institute for Computer Science and

Business Information Systems (ICB)

University of Duisburg-Essen

Universitétsstr. 9

45141 Essen — Germany

Tel.: +49 201-1834041

Fax: +49 201-1834011

Email: icb@uni-duisburg-essen.de
ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)
DOI 10.17185/duepublico/75252

Abstract

In this research report, we present a new version of IT Modeling Language (ITML). It is
integrated with the family of Domain-Specific Modeling Languages (DSMLs) that are part
of Multi-Perspective Enterprise Modeling (MEMO). The design of the language followed a
proven method. It provides for analysing requirements based on the analysis of possible use
scenarios. The ITML was specified with the meta modeling language MEMO MML. Due to the
considerable size of the meta model, its presentation is split into several partial meta models,
which are described at a level of detail that is required for the implementation of the language
within a modeling tool. The presentation of the meta model is supplemented by discussions of
design conflicts and related decisions. In addition to the abstract syntax and semantics, which
are represented by the meta model, we also propose a concrete syntax, which was designed
with the support of a graphic designer. Finally, we also provide a short discussion of principal

limitations of conventional meta modeling as well as an outlook on our future research.

Keywords: IT management, enterprise modeling, IT infrastructure, ITML, MEMO, multi-level

modeling.

Contents

1 Introduction

2 Main Analysis Scenarios

2.1

2.2

2.3
24

Analysis of IT Landscape Elements
2.1.1 Identification of Existing IT Landscape Elements
2.1.2 Analysis of Main Characteristics of Existing IT Infrastructure Elements .
2.1.3 Analysis of Dependencies Among IT Landscape Elements
IT-centric Analysis
221 Security Analysis
222 Maintainability oo o
223 Portability Analysis o
224 Performance Analysis
225 Availability Analysis o
2.2.6 Analysis of Vendors and Existing Relationships
Integration Analysis L
Integrated IT Infrastructure and Action System Analysis
241 Analysis of IT-Business Alignment
242 Analysis of Organizational Assignment

3 Language Design: Abstract Syntax and Semantics

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

Main IT Landscape Elements
Selected IT-centric Analysis
Integration: Technologies, Languages, and Conceptual Integration
IT Architecture e
Integrated IT Infrastructure and Action System Analysis
Auxiliary Types e
Constraints o e e e e e e e

Requirements and Their Fulfillment

4 Language Design: Concrete Syntax and ITML Diagram Types

41
4.2

ConcreteSyntax
Selected ITML Diagram Types

iii

O X 0 3 OB W W

T Y Y
NN OO O W NN DN -, O

421 IT Infrastructure Diagram

422 Topic Diagram and Corresponding Analysis

423 Architecture Diagram L.
4.3 Integration of ITML Diagram Types With Other MEMO Diagram Types

4.4 Selected Design Principles
5 Conclusions
A Concrete Syntax — Concepts

Bibliography

iv

77

81

86

IT Modeling Language (ITML): A DSML for Supporting IT Management

1 Introduction

IT management incorporates a variety of topics that range from the development and operation
of enterprise information systems, to the generation of value through the use of IT (Hanschke
2010; Luftman and Bullen 2004; Mangiapane and Buechler 2015). IT management encompasses
planning, controlling and organizing aspects involving IT infrastructure (Hanschke 2010). In
turn, an IT infrastructure encompasses (1) different kinds of IT artifacts such as, e.g., computa-
tional hardware, software, data, networks and data center facilities, (2) various dependencies
among those artifacts, as well as (3) actors designing or maintaining the IT infrastructure, cf.
(Duncan 1995; Hanschke 2010; Laan 2017; Nyrhinen 2006). However, what exactly is to be
perceived as part of IT infrastructure, and at which level of granularity, depends to a large
extent on stakeholders involved and/or IT management analyses targeted, cf. (Kaczmarek-Hefs
and Kinderen 2017; Laan 2017).

In the era of digital transformation, elements of an organization action system, such as business
processes, business goals, strategies, or organizational structures, are heavily affected by the
adoption of digital technologies (Parviainen et al. 2017). Acknowledging the importance of
IT infrastructure management for an enterprise as a whole, different modeling languages in
the field of enterprise modeling have been proposed, among others, to: (1) promote better
understanding of an enterprise and the role IT plays in it, (2) creating a common language
between business and IT, thus making explicit links between the action system (e.g., processes,
goals) and IT artifacts (e.g., information systems, IT services), and thus, explicitly showing the
complex inter-dependencies that exist among and within these domains, as well as (3) provid-
ing support for processes that are considered to be at the core of IT management and which aim
at documenting and analysing IT landscape, as well as at governing and controlling its evolu-
tion!. Examples of such approaches are, among others, ArchiMate (The Open Group 2012),
Architecture of Integrated Information Systems (ARIS) (Scheer 2001), and Multi-Perspective
Enterprise Modeling (MEMO) (Frank 2014b), with an IT Modeling Language called ITML.

Although, conceptual overlaps between these IT modeling languages can be assumed, as all of
them are oriented towards developing structured descriptions of IT infrastructure, the existing
modeling approaches differ substantially when it comes to the modeling foundations and
assumptions, domain coverage, as well as semantic richness of offered concepts, and thus, also
the set of scenarios supported, cf. (Bock, Kaczmarek, et al. 2014; Kinderen and Kaczmarek-Hefs

'For overview of IT management processes as such see, e.g., (Hanschke 2010)

1 Introduction

2018). In this research report, we focus on the ITML being part of a comprehensive method
for multi-perspective enterprise modeling (MEMO) (Frank 2014b). MEMO includes various
other domain-specific modeling languages (DSMLs), e.g., languages for business processes,
resources, or goal modeling. Being part of MEMO, ITML models can be enhanced with the
relevant aspects of an enterprise to allow for analysis in an IT-business alignment context, and

foster communication between stakeholders with different professional backgrounds.

The ITML as proposed by Frank et al. (2009) and further extended by Heise (2013), and
Kinderen and Kaczmarek-Hef3 (2018), offers the basic concepts reconstructed from the domain
of discourse, e.g., Software, Computer, Server, Peripheral Device, Service, Physical Medium
or Application System. However, the concepts offered do not allow to support all analysis
scenarios that are currently of interest, as well as, considering the current developments, do
not account for all relevant aspects and technologies (e.g., containers, distributed ledger). In
this research report, driven by the need to further extend the set of analysis scenarios that
should be supported, we present a new version of the ITML. Here we focus on the definition of
analysis scenarios, which should be supported by the ITML, and associated conceptualizations
in terms of its abstract syntax created with the MEMO Meta Modeling Language (MEMO
MML) (Frank 2011), semantics, as well as the concrete syntax and associated diagram types.

Creating a domain-specific modeling language is a non-trivial endeavor, cf. (Frank 2013),
involving not only challenges regarding the reconstruction of domain concepts, but also
challenges surrounding meta modeling specifically, such as deciding what concepts are to be
part of the language specification, and what concepts are to be part of the language application.
Therefore, to support the DSML design process, we follow the DSML design method as
proposed by Frank (2013). This method, which already has proven useful in other projects
(e.g., Goldstein and Frank 2016; Kinderen and Kaczmarek-Hef3 2018; Overbeek, Frank, and
Kohling 2015), provides a macro-process for language design, as well as corresponding roles
and guidelines. It consists of 7 steps: starting from the clarification of scope and purpose,
through the analysis of requirements, specification of language (abstract syntax and semantics),
provision of graphical notation (concrete syntax) and the optional development of a modeling
tool. The process ends with the evaluation and refinement of the developed language, and
(potentially) the corresponding software tool. As already mentioned, in this report we discuss
analysis scenarios of interest, requirements, as well as the design of a language.

The research report is structured as follows. First, we provide an overview of typical IT infras-
tructure analyses, and derive a set of high-level requirements towards a language. Then, the
abstract syntax, language semantics as well as selected design decisions are shortly discussed.
Next, a short overview of the concrete syntax follows, complemented by a short presentation
of selected diagram types. Finally, in the conclusions an outlook is provided on challenges
associated with modeling IT infrastructure with conventional meta modeling, as well as on

promises of the multi-level paradigm.

IT Modeling Language (ITML): A DSML for Supporting IT Management

2 Main Analysis Scenarios

The main goal of the IT Modeling Language (ITML) is to provide support for the needs of
IT management, cf. (Hanschke 2010; Luftman and Bullen 2004; Mangiapane and Buechler
2015). As the ITML’s design is driven by use scenarios, which we consider being central to
the development of modeling languages (Frank 2013), in this chapter, we discuss the main
use scenarios for the ITML. We do this in terms of both (i) analyses of the IT infrastructure
itself that should be supported by a standalone IT Infrastructure modeling language, and
(ii) analyses that cut across the IT infrastructure and other organizational perspectives (such
as business processes, organizational goals, organizational structure, or otherwise) that are of
interest, if an IT modeling language is part of an enterprise modeling approach.

The scenarios discussed in this chapter are accompanied by the formulation of a set of re-
quirements. These requirements, in turn, will inform the design of the ITML, as discussed in
Chapter 3. In our discussion we also briefly touch upon the need for a modeling language and
analysis of models in order to fulfill the identified requirements.

2.1 Analysis of IT Landscape Elements

The analysis of elements of an IT landscape and their characteristics is the basic scenario
being of interest for IT management (Hanschke 2010; Luftman and Bullen 2004; Mangiapane
and Buechler 2015). Namely, based on the analysis of the created diagram, it should be
possible to answer questions regarding (1) IT infrastructure elements, (2) their properties and
functionalities they provide, and finally, (3) relationships and dependencies between those
elements. Please note that we are interested in both information applicable to types of IT
artifacts, e.g., properties of an operating system, or of some type of hardware platform; as
well as information applicable to some specific installations (e.g., specific installation of some
specific version of an operating system on some specific hardware platform in some specific
location) and exemplars (e.g., configuration and properties of some specific exemplar of some
model of printer). Thus, we are interested in both information applicable to the type level, as
well as the instance level. This leads us to the following requirement (R).

2 Main Analysis Scenarios

R1: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of IT infrastructure elements, their properties and dependencies

between different elements, both on the type-level as well as on the instance-level.

It is noteworthy that in emphasizing the modeling of, both, type and instance level information,
the ITML should build on a language architecture that is equipped with features allowing to
differentiate between these two types of information.

2.1.1 Identification of Existing IT Landscape Elements

Purpose: Analysis of IT landscape elements focuses on answering questions regarding elements
belonging to IT infrastructure and their role.

From a technical perspective, the IT infrastructure is used to collect, store and process data. This
requires hardware that provides computing power, as well as temporary and persistent storage.
It also includes various devices for recording and providing data, as well as infrastructure
allowing for exchange of messages between components. Software is required to make these
basic hardware functions accessible in a safe and convenient way. Basic software, such as
an operating system, serves to enable an abstraction from the resources provided with the
hardware (storage space, processor capacity, etc.). This not only reduces the dependency
on specific hardware, but also creates convenient access to the hardware. The separation
between hardware and software is fluid. Functions that are provided by software can also
be implemented using dedicated hardware, for example to achieve performance advantages.
Conversely, hardware can be simulated by software. The software that is used to manage the
hardware resources, as well as the data on which it operates, also represent resources that are
used by other software systems.

IT infrastructures usually encompass several computers connected via a network and other
devices. Therefore, functionalities are required that support distribution of resources, as well
as dealing with heterogeneity. Here, heterogeneity primarily refers to different processor
architectures, different basic software and different programming languages. A distributed
system consists of several computers that are connected via a network with one another. The
resources of a distributed system are to be managed in a similar way to the resources of a single
computer. Corresponding functionalities include administration and access to distributed
storage systems and peripheral devices, loading, executing and scheduling programs, and
protecting distributed resources from unauthorized access. Since the resources of a distributed
IT infrastructure are sometimes used by several users simultaneously (“multi-user operation”),
functions are required that synchronize concurrent access to resources in such a way that the
integrity of the accesses is preserved. For this, the secure execution of transactions must be

supported.

IT Modeling Language (ITML): A DSML for Supporting IT Management

Exemplary questions of interest:
e Which types of hardware platform are used?
e What printers are there?
e Do we have any application server running?
e Which type of an enterprise system do we use?
e How many licenses for some operating system are available?
e What IT-services are offered?
e What functionalities are offered by IT landscape elements?
e What application programming interfaces are offered?
e Do we employ a distributed ledger technology?
e Do we employ inductive systems, e.g., inductive reasoners'?
e What networks are there?
e Where are our servers located?

Although many of the exemplary questions formulated may seem to be easily answered by
getting information, e.g., from a configuration management database, as subsequent sections
show, please note that the analysis scenarios that we target at are much more complex in
nature and require not only looking at some selected properties of IT artifacts, but defining
and analyzing complex dependencies among them, processing acquired information, as well
as communicating it effectively. To this aim application of conceptual models created using a

dedicated domain-specific modeling language is particularly suitable.

Key concepts: various types of hardware as well as software, interface, network, network access,
data storage, location

Requirements:

R2: The IT infrastructure modeling language should provide differentiated concepts support-

ing comprehensive modeling of hardware platforms and associated concepts.

R3: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of software artifacts and related concepts.

'In recent years, various systems that make use of inductive approaches received growing attention. They
comprise statistics software, e.g., for data analysis, or “machine learning” approaches. We use the term
‘inductive system’ to name this class of software.

2 Main Analysis Scenarios
R4: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of IT services.

R5: The IT infrastructure modeling language should provide differentiated concepts support-

ing comprehensive modeling of hardware devices (e.g., peripheral devices).

R6: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of other elements of IT infrastructure, such as network or data

storage.

2.1.2 Analysis of Main Characteristics of Existing IT Infrastructure Elements

Purpose: The relevant characteristics to be covered, are partly determined by the analysis
scenarios of interest to IT management, for a partial overview, cf. (Bucher et al. 2006; Hanschke
2010; Niemann 2005). These scenarios range from relatively straightforward, such as the life-
cycle stage of an IT infrastructure element, to more comprehensive ones. For scoping purposes
we focus here on relatively straightforward analysis questions, whereas more comprehensive
ones are covered in the IT-centric analysis described in Section 2.2.

Exemplary questions of interest:
e What functions are delivered by some software artifact?
e Which implementation language was used to create some software artifact?
e What is the size of the external storage, e.g., external hard-drive used?
e What is the printing speed of a given printer?
e What is the type of the software licenses in use?
e Which programming languages, of which we are explicitly aware, are used in-house?
e What is the rationale for using a particular distributed ledger technology?
e What is the rationale for using a particular inductive system?

e Which interface an application is using? How is the application and/or the interface

implemented in technical terms?
e What type of middleware are we using in our architecture?
e What is the life-cycle stage of a given IT artifact?

e What data and on what topic is exchanged via existing interfaces?

IT Modeling Language (ITML): A DSML for Supporting IT Management

e How is data used by some software applications, meaning: does the application read or
write data?

e What is the assessment of application software in terms of user satisfaction?

Key concepts: Properties of software and hardware artifacts, related concepts such as interface,
programming language, communication protocol, transport protocol, data, data format, etc.

Requirements:

R7: The IT infrastructure modeling language should express properties of different IT infras-
tructure concepts as they are part of the professional IT infrastructure discourse. For example,
this includes properties of a hardware platform or a software application, as described under

the identification of IT infrastructure elements.

2.1.3 Analysis of Dependencies Among IT Landscape Elements

Purpose: The main focus is to analyze dependencies and relationships between existing IT
infrastructure elements. Also, among others, analyses on location and deployment options
are here in focus. In a most trivial case, we can deploy the software on premises or in the
cloud. Please note that each option has benefits and drawbacks. E.g., on the one hand, cloud
deployment allows to abstract from the complexity of managing the physical infrastructure and
offer a flexible, cost-effective business model. However, on the other hand, cloud deployment
comes at the cost of losing control over the physical IT infrastructure. Finally, deployment
can take the shape of so-called containers, which are said to provide everything required
to run a program, cf. (Ernst, Bermbach, and Tai 2016; Newman 2015; Sultan, Ahmad, and
Dimitriou 2019; Syed and Fernandez 2018), such as libraries, APIs, etc. Containers are especially
relevant, if single applications are designed as being composed of many loosely coupled
and independently deployable components or services, and it is of interest to, e.g., make
deployment dependencies explicit (Ernst, Bermbach, and Tai 2016; Newman 2015; Sultan,
Ahmad, and Dimitriou 2019; Syed and Fernandez 2018).

Exemplary questions of interest:
e What are the dependencies among existing software artifacts?

o Which software communicates with which software and what are the characteristics of
such a communication (e.g., protocol used, data exchanged)?

Which web server is part of a middleware solution?

Which software is wrapped by a component?

Which software artifacts run on which platforms?

2 Main Analysis Scenarios

e Where are different (hardware) platforms physically located?

e Where is application software deployed/hosted? Is it running on our premises or in the

cloud environment?

e Can some IT artifact also be used with other hardware and/or within other software

environments?
e What IT services are offered by an application?
e Which IT services are used by some application?

e Which interfaces are used by IT services?

Key concepts: IT service, software and its specializations, hardware and its specializations, runs

on, executable on, requires, provides, uses
Requirements:

R8: The IT infrastructure modeling language should allow to model dependencies among
various elements of the IT landscape (e.g., between software artifacts, software and platforms,
or software artifacts and IT services), as indicated by the questions posed above.

2.2 TT-centric Analysis

In the following, we discuss specific IT-centric analysis scenarios focusing on qualitative
features of IT artefacts. Although there is no commonly accepted notion of “quality” of IT
artefacts, to organize our discussion according to a common denominator, we use the well-
established Systems and software Quality Requirements and Evaluation (SQuaRE) model (ISO
2011).

2.2.1 Security Analysis

Purpose: while security is important to IT management, it is still unclear how to suitably assess
the level of security in a company, since the definition of the topic is ambiguous (Goldstein and
Frank 2016; Johansson and Johnson 2005). We assume that analysis of security in its simplest
form focuses on three elements: authorization, authentication, and confidentiality. ITML

should allow to conduct a basic analysis of security related aspects for those three elements.
Exemplary questions of interest:

o Is the network protected by a firewall?

IT Modeling Language (ITML): A DSML for Supporting IT Management

o Is the transport protocol used secure?

e Is the exchanged data encrypted? What kind of encryption is used?

e Is our server storing the sensitive data in the protected network?

o Are all of the desktops and notebooks protected by a personal firewall?
e Is the exchange of sensitive data protected?

e Which process types and which organizational units are accessing which data? In which

mode (read or write)?

Key concepts: Properties of software and hardware artifacts, supporting concepts such as
tirewall, transport protocol, encryption method

Requirements:

R9: The IT infrastructure modeling language should account for supporting basic analysis
related to authorization, authentication and confidentiality. To this aim relevant properties of
IT artifacts (e.g., authorization type applied), their interactions (e.g., transport protocols), as
well as dedicated concepts (e.g., firewall) and their configuration, should be accounted for.

2.2.2 Maintainability

Purpose: Maintainability “is the capability of the software product to be modified” (ISO 2011) or
“the ease with which it can be modified to changes in the environment, requirements or func-
tional specification” (Bengtsson et al. 2004). Maintainability is considered to be important for
IT infrastructure in an organization. The evaluation of maintainability may deliver important
insights into IT infrastructure changeability, which facilitates the choice of more appropriate
versions of architecture, or may reveal its flaws before commencing the development. In a
general sense modifications to software systems can include corrections, improvements or
adaptation of the software, but they also include such activities as installation of updates and
upgrades.

Maintainability analysis requires architectural information that allow to assess the effort
required to conduct a change (modification), but also to analyze the impact of the change (i.e.,
identifying the architectural elements, directly and indirectly, affected by a change). Note here
that we focus on estimation of “maintainability”, i.e., we assess any indicators related to it (such
as aforementioned effort, or impact) as it is may be estimated by an analyst/practitioner. A
fully-fledged maintainability analysis in turn, requires information that cannot be delivered by
ITML diagrams alone.

2 Main Analysis Scenarios

Exemplary questions of interest:
e Is the source code available?

Is documentation available?

What is the current version of the system and when was the last update installed?

What language has been used for implementation purposes?

e What are relationships with the other elements of IT infrastructure, e.g., what other
IT elements are using the considered IT artifact? What IT elements are used by the

considered IT artifact?
e What is the estimated effort of conducting a modification of a piece of software?

Key concepts: properties of concept Software such as estimated effort, source code availability,
documentation availability; relationships between components being part of a software artifact,

implementation language used
Requirements:

R10: The IT infrastructure modeling language should account for supporting basic analysis of
maintainability of the IT infrastructure. Thus, it should account for architectural information
as well as dependencies among elements of IT landscape allowing to analyze the impact of a

modification.

2.2.3 Portability Analysis

Portability, according to ISO, encompasses adaptability, installability and replaceability, and
may be defined as “degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational or usage
environment to another” (ISO 2011). Please note that at the core, the assessment of portability
requires conducting analysis of existing (constraining) dependencies among IT artifacts, as well
as their constraining characteristics (e.g., supported data formats, supported system versions).

Please also note that the analysis of replaceability may reduce lock-in risk.
Exemplary questions of interest:

e Which types of hardware and software environment is a given software artifact suited

for?

e What standards, e.g., when it comes to standardized file formats, are supported by a

given software artifact?

10

IT Modeling Language (ITML): A DSML for Supporting IT Management

e Does the new version of the system has any new dependencies/requirements compared

to the previous one?

e What are the constraining characteristics of some IT artifact, e.g., a maximal number of

users, maximal data storage supported?

Key concepts: a set of dedicated relationships: runs on, suited for, requires, a set of dedicated

attributes: scalability, standards followed, etc.
Requirements:

R11: The IT infrastructure modeling language should account for additional relationships

reflecting various dependencies between IT artifacts supporting a portability analysis.

R12: The IT infrastructure modeling language should account for characteristics of IT artifacts

supporting portability analysis (e.g., constraining characteristics, usage of standards).

2.2.4 Performance Analysis

Purpose: Performance analysis focuses on what is the desired, average, as well as actual
performance of various IT infrastructure elements, with the aim to answer a question, whether

the performance offered is satisfactory from a business perspective.

Please note that, like security and maintainability related analysis, in our analysis questions
on performance we focus on a simplified notion of estimated performance only. The reason
for doing so is similar to that discussed previously. On the one hand, performance related
scenarios are important, especially when considering IT in conjunction with the organizational
action system using it (e.g., a business process “insurance claim processing” relying on the
throughput of a “claim processing” software application). On the other hand, an in-depth
performance analysis is a complicated issue, which requires dedicated languages, such as the
Architectural Analysis and Design Language (AADL), which lists performance analysis as one
of its key analysis of the quality of performance-critical systems (Feiler, Gluch, and Hudak

2006, p. 5). Such dedicated performance analyses however, are out of our scope.
Exemplary questions of interest:

e What is the estimated average performance of some type of an IT landscape element
(e.g., a hardware platform type, software artifact type)?,

e What is the actual performance of some specific IT landscape element?

Key concepts: estimated performance of software and hardware artifacts.

11

2 Main Analysis Scenarios

Requirements:

R13: The IT infrastructure modeling language should express estimated performance of
IT landscape elements, whereby a specification of performance depends on the type of IT
landscape element.

2.2.5 Availability Analysis

ISO (2011) considers availability as part of artifact reliability. In the following, we focus on the
technical availability only.

Purpose: The availability analysis focuses on such basic questions like “what is the average
and actual availability of various elements of IT infrastructure”? Similar to indicators for our
analyses discussed earlier, being aware of the complexity of the availability analysis and its
operationalization for different IT artifacts?, we focus on the simplified notion of estimated
availability only.

Exemplary questions of interest:

e What is the estimated average availability of some type of an IT landscape element (e.g.,
a hardware platform type)?

e What is the actual availability of some specific IT landscape element (e.g., an instance of
hardware platform)?

Key concepts: Properties of software and hardware artifacts.
Requirements:

R14: The IT infrastructure modeling language should express (technical) availability character-
istics of IT landscape elements.

2.2.6 Analysis of Vendors and Existing Relationships

Purpose: It is important to have an overview of all vendors and what they deliver to our
organization with an eye to, e.g., vendor lock-in. Related analyses entail the identification of
vendors of all IT landscape elements, analysis of existing contracts and support agreements,

etc. It should be possible to assess vendor risks, as well as vendor power.

Consider the difference in availability of storage devices, network storage, and a network generally. For storage
devices, availability is influenced by the use of a (hot swappable) array of disks, whereas for network storage,
the used data replication mechanism counts. Availability of a network is different still, since it is substantially
influenced by the underlying network topology.

12

IT Modeling Language (ITML): A DSML for Supporting IT Management

Exemplary questions of interest:
e With how many different vendors are we collaborating?
e To what extent are we dependent on some vendor?

e How critical to our business are products and solutions offered by some vendor? What
risks can be identified, in case the vendor will get out of the market, or stop offering
product support?

Key concepts: vendor and its characteristics, contract, agreement, provided IT landscape ele-
ments

Requirements:

R15: The IT infrastructure modeling language should provide concepts delivering information
required for the needs of conducting a basic vendor analysis.

2.3 Integration Analysis

Integration is a pivotal concern when it comes to the analysis of IT infrastructures. The benefits
of integration are significant, cf. also (Kattenstroth, Frank, and Heise 2013; Luftman, Zadeh,
et al. 2012). In this section we focus specifically on two aspects (1) data integration and
(2) functional integration. As an excursus, we also briefly discuss selected conflicts.

Data integration

Purpose: Integration requires the ability of two or more systems to exchange information,
and use the information exchanged. Based on the modeled IT landscape one should be able
to conduct a manual analysis in order to assess the level of integration, by focusing on the
communication between various software artifacts and their properties. This includes types of
data objects exchanged, exchanged file format document used, information covered, as well as
characteristics of the software artifacts (e.g., implementation languages). Information should be
also provided regarding whether, e.g., middleware, is necessary to enable the communication
between different artifacts.

Note here again that “integration” is a complicated issue, touching not only on technical
issues like the used implementation language, but also on many topics that are intricate and
contingent in their own right, like formal and material semantics, or the notions of data and
information. The information provided by the ITML diagrams should support manual analysis
and provide some hints regarding additional integration possibilities.

13

2 Main Analysis Scenarios

Exemplary questions of interest:

e Which software artifacts communicate and what are the characteristics of this communi-

cation?

e What is the type of data being exchanged, e.g., in terms of “primitive” data types (such

as byte, string, or boolean), data structures, and classes?
o Which data structures are used in the communication?

e Which middleware types are used in the organization, and what other elements they
include?

e What data is read and written by various software artifacts? Is there any hint to investi-

gate the potential for further integration?

e What data is covered by existing databases? What software artifacts use specific
databases?

e Are two application systems using the same or similar data? Do they share a common
database/repository?

e Are two applications based on the same data model?
e Are two applications using databases having the same schema?

Key concepts: data, middleware, implementation language, file format, wraps, has connector to,
accesses data, reads data, writes data, data storage

Requirements:

R16: The IT infrastructure modeling language should explicitly account for data and its formats,

as well as implementation languages of different IT infrastructure elements.

R17: The IT infrastructure modeling language should distinguish different types of middleware
and corresponding relationships to other IT artifacts.

R18: The IT infrastructure modeling language should explicitly account for abstractions of the

used data structures, allowing for classification of processed data.
Functional integration

Purpose: In the analysis of functional integration, functions provided by different IT artifacts are
considered together with their data sharing interfaces. One is interested in identifying similar
functions offered by different artifacts in order to identify potential redundancies and assess the
potential for integration. Note here that our analysis questions regarding functional integration,

and its according conceptualization (e.g., in terms of the concept function topic, cf. Chapter 3),

14

IT Modeling Language (ITML): A DSML for Supporting IT Management

can be foreseen to be elaborated in terms of dedicated additional concepts and according
diagrams. For example, it may be used to combine functional notions as contained in a Data
Flow Diagram, with information and action system notions, such as software applications
provisioning certain functions. Such an “enriched Data Flow Diagram” is however out of the
scope of the current research report.

Exemplary questions of interest:

e What functions are provided by which artifacts?

e What interfaces are provided by a software artifact?

e Where which functions are provided and used?

e Which artifacts provide similar functions?

e Which artifacts provide some specific function?
Key concepts: function, provides function, uses function, interface
Requirements:

R19: The IT infrastructure modeling language should explicitly account for functions covered
by IT artifacts belonging to the IT landscape. It should be possible to relate software artifacts
to functions that they cover. Finally, it should be possible to state assessed similarity between
functions.

R20: The IT infrastructure modeling language should explicitly account for interfaces and
functionalities offered by IT artifacts.

Integration and reuse

As an noteworthy excursus, it is worth pointing out some design conflicts that should be
considered here. Consider for instance two objects/components, which share a common
semantic reference system. Firstly, the lower the range of interpretation of the concepts in
this common semantic reference system, the higher is the level of integration between the two
components. For example, it could be that both objects/components share the class “Printer”
with specific attributes like “printingSpeed”. When one object/component communicates
about a specific printer, the class “Printer” lowers the range of interpretation compared to
something as generic as an “Object”. At the same time, a higher integration comes at the
cost of a lower range of reuse. Namely, the lower range of interpretation inherent to higher
integration also - by definition - excludes interpretations that - as a systems analyst - one at
times might want to include, e.g., in the communication between two objects/components. In
the most extreme case, this can be achieved by labeling everything as an “Object”, which has a

very high range of reuse. However, due to its low level of information content “Object” can

15

2 Main Analysis Scenarios

hardly be considered to foster a high level of integration. As such, while not in the focus of this
research report, finding an appropriate balance between reuse and integration is a key task
for an information systems analyst. Therefore an IT infrastructure modeling language should
allow representing this conflict, e.g., by expressing levels of semantic on an ordinal scale. For
further discussion, cf. (Frank 2014a).

2.4 Integrated IT Infrastructure and Action System Analysis

In this section, we mention a few exemplary analysis scenarios that become possible once
an IT infrastructure modeling language is part of an enterprise modeling approach, i.e., IT
landscape may be analyzed in the context of enterprise action system (e.g., business processes,
organizational structure, or defined goals). Thus, to support integrated analysis scenarios
mentioned subsequently, an IT modeling language needs to be integrated with other modeling
languages, and all involved languages need to be used in tandem.

2.4.1 Analysis of IT-Business Alignment

Purpose: TT-business alignment focuses on how effectively the IT landscape supports and
enables the business strategy of a company. Via the analysis of IT Infrastructure models, in
tandem with models which express a different perspective on the enterprise action system
(such as business processes), it should be possible to (1) assess and, if necessary improve, the
alignment of IT and business to ensure that they work as a partnership and support enterprise
business processes; (2) conduct analysis of the IT environment for strategic planning (e.g.,
by determining which elements of IT infrastructure support the fulfillment of enterprise’s
goals).

In order to assess the IT-business alignment, it is necessary to define (1) which elements of IT
infrastructure support directly business processes, as well as the properties of such a support.
Such properties include relevance for a process, or frequency of usage; (2) which elements of
IT infrastructure support which enterprise’s goals, as well as properties of such a support.

Subsequently, knowing which services/applications are critical (to both business processes as
well as defined goals) allows to investigate the physical IT infrastructure underneath, in terms
of the (characteristics of) used operating systems, computational infrastructure, and storage
infrastructure.

Exemplary questions of interest:

e Which applications are critical for the core business?

16

IT Modeling Language (ITML): A DSML for Supporting IT Management

e What is the contribution to the strategical goals of an organization that each application

make?
e Which business processes are supported by which application?
e Which business units use which applications for which business processes?

e What are the characteristics of the support provided by some applications/services to
business processes and their elements? Which processes in the organization depend

highly on the IT infrastructure?

e Which organizational actors would need to be considered for additional software training,

if we change the application software used to support some process?

Key concepts: 1T service, software artifact, support relation, business process, organizational

unit
Requirements:

R21: The IT infrastructure modeling language should allow to link elements of IT landscape
and processes they support. The characteristics of the support provided should be accounted
for.

R22: The IT infrastructure modeling language should allow to relate IT landscape elements to
goals of organization, in terms of the influence of these elements on goal achievement. The

characteristics of the influence provided should be accounted for.

As a brief excursus note that, especially with analysis which cut across different concerns, the
need for a modeling language again becomes apparent. In this case, to get stakeholders coming
from different professional backgrounds on the same page, a visual modeling language as an

instrument for gaining consensus would be called for.

2.4.2 Analysis of Organizational Assignment

Purpose: The organizational assignment should be clearly communicated. It should be also
possible to point to existing responsibilities assignment for each IT artifacts. When it comes
to specifying the “who”, various organizational structure elements can be meant, such as a
particular organizational role (e.g., an IT administrator), or various kinds of organizational
units (such as a department). By analyzing the organizational assignment, we are not only able
to answer the questions regarding some specific responsibilities (e.g., responsible, accountable,
consulted and informed (RACI), cf. also (Feltus, Petit, and Dubois 2009)), but also check
whether each IT artifact type has someone responsible assigned, whether the appropriate

organizational units are assigned, whether there is some optimization potential (e.g., similar

17

2 Main Analysis Scenarios

applications are assigned to different organizational units, or applications written using Java
are assigned to a C# Programmer). It is also possible to identify problems resulting out of
the incorrect division of responsibilities (e.g., different organizational units involved in the

maintenance process). In addition, one can check the workload of, e.g., some specific roles.
Exemplary questions of interest:

e Which organizational unit is assigned, e.g., as a responsible or accountable for an element

of IT landscape of interest?
e Do all elements of the IT landscape have a responsible person assigned?

Please note that the consideration of the location, performance, availability, as well as organiza-
tional assignment may trigger analysis of consolidation opportunities, which are there regarding
the shared use of infrastructure, taking into account aspects such as performance, security and

maintenance windows.
Key concepts: Organizational unit, software artifact, hardware platform, responsibility relation
Requirements:

R23: The IT infrastructure modeling language should allow to link elements of IT landscape

with organizational units and express the role of linked organizational units.

18

IT Modeling Language (ITML): A DSML for Supporting IT Management

3 Language Design: Abstract Syntax and Semantics

The analysis of the requirements performed in the previous section clearly shows that a
language for modeling IT infrastructures requires a careful reconstruction of technical concepts
from the field of IT management. Those concepts should be, on the one hand, (1) general
enough to account for all relevant IT infrastructure elements, and, on the other hand, (2) specific
enough, to support differentiated analyses, necessary to answer the questions mentioned in
the previous section. Therefore, in line with the identified requirements, on the one hand, the
ITML should provide semantically rich concepts reconstructing the technical terminology of
the IT domain, and on the other hand, the ITML’s concepts should be applicable to a wide
range of enterprise settings and over a longer period of time, therefore, they should be generic.
The reconstruction should account for different perspectives and granularity levels, as well as
consider concepts from the business domain.

The concepts offered with the ITML are designed to support IT management with relevant
analyses. The corresponding analysis questions however, cannot always be answered using a
model of the IT infrastructure only. Sometimes it is necessary to include models of the action
system, specific models of the software used, or acquire additional data from within or outside
of the organization in question.

Taking the above into consideration, in what follows, we discuss the abstract syntax and se-
mantics of the designed modeling language. Note that the borderline between abstract syntax
and semantics is blurred. Specific aspects of a language can often be specified with its abstract
syntax or, alternatively, with its semantics. For the sake of simplification, we assume that the
abstract syntax is defined through the part of a meta model that corresponds to its graphical
representation in a diagram, while additional semantics is defined through constraints, e.g.,
Object Constraint Language (OCL) constraints. In addition to these formal characteristics of a
language, conceptual modeling also requires accounting for material semantics or the meaning
contributed to a concept by humans. The meaning of concepts found in the domain of IT
management is relevant for two reasons. First, it serves us as a starting point for the reconstruc-
tion of domain languages through the ITML. Second, the concepts of the ITML themselves
need to be explained to prospective users, which recommends referring to corresponding

domain-specific concepts.

As we create the ITML with an intention to be used with other MEMO languages, its abstract
syntax is defined using the MEMO method’s common Meta Modeling Language (MML)

19

3 Language Design: Abstract Syntax and Semantics

(Frank 2011) to foster the DSML’s integration into MEMO method’s language architecture
(Frank 2014b, pp. 947-950). The MML in addition to the other concepts commonly used in
meta modeling, provides the possibility to model intrinsic features' and intrinsic relations.

V72V
1

This intrinsicness, marked by the literal in white color on a black background, allows for
modeling concepts, attributes and relations that may be instantiated only on the instance level,
and not on the type level. In addition, the MML allows for modeling so called Language Level
Types — visualized with a black name of the concept on a grey background — which allow for
specifying concepts that represent instances already on the model level (M;), and cannot be

instantiated on the instance level (My) anymore (Frank 2011, pp. 23-24).

In the following, we present and discuss excerpts of an ITML meta model. We point to
our understanding of selected concepts, as well as analysis possibilities resulting out of the

proposed conceptualization.
While looking at the presented meta model’s excerpts, please note the following:

e Defined attributes and relationships encompass both type-level as well as instance-level
aspects (intrinsic attributes and relationships). As visible in the requirements identified
in the previous sections (cf. especially R1), IT management focuses on both individual IT

artifacts as well as their types, depending on the goals of the analysis;

e The meta types could be described in a more differentiated manner. For instance, in
the case of mobile computers the size and resolution of the screen could be taken into
account. We have refrained from such details in order to maintain the clarity of the

diagrams;

e As various meta types may appear multiple times in different meta model excerpts, their

attributes are presented only within one excerpt, and in other visualizations replaced by

o The relevant integrity constraints are formulated using the Object Constraint Language
(OCL), whenever possible. Please note however, that one is not able to use OCL to
formulate constraints that relate to the instance level (i.e., that relate to instrinsic attributes
and/or relationships). This would be however necessary to ensure integrity on the
instance level. For instance, a specific central processing unit is mounted on some specific
hardware platform, but a type of CPU fits one or more types of hardware platforms.
Therefore, a constraint would have to be specified that ensures that some specific CPU is
mounted on only specific hardware platforms, whose types the CPU type fits. In those
cases, we formulate the constraints in the natural language only. All constraints may be
found in Table 3.7.

"ntrinsic features “can be instantiated only from the instances of their instances”, i.e., a meta type or meta attribute
can be instantiated only on My, but not on the M; level (Frank 2011).

20

IT Modeling Language (ITML): A DSML for Supporting IT Management

name : String
width : Di

1.% 0.1 Vendor
0.1
3

height : DimensionValue [4 3
length : DimensionValue

[o] noOfExemplars : Integer
I procured : Date
M serialNo : String

< executableOn

has p

MobileCase

RackMounted

numberOfSystemSlots : Integer
numberOfStorageSlots : Integer

1.* 1.*

numberOfDrawers : Integer
1.1

weight : DimensionValue
screenincluded : Boolean

<« partOf

<[l pertof

StationaryCase

« mountableOn

CPS type : {#tower, #compact, #mini, #AllinOne, #other}

numberOfSystemSlots : Integer

<[l mountedon number0 : Integer
0.1
I buittinto B performanceLoss : OrdinalAssessment
) ..*| name : String compatibility : OrdinalAssessment
fitsTo B [d noOfinstances : Integer CP3
has B . 1.*
0. 0.1 0.*
1.1 partof B>
CP6
m 11 CPs | artof
name : String H ertof » partof B
1.1
L1 OSKernel
a Jatf name : String
HardwarePlatform type : {monolithic, exokernel, hybrid, microkernel, nanokernel}
maxNoOfProcessors : Integer multiTasking : Boolean
[©] noOfExemplars : Integer version : String
[l actMemory : MemorySizeValue - multipleArchitectureSupport : Boolean
Hl obtained : Date VirtualPlatform « realizes 11
M serialNo : String I T « partof
1.* 1.1 partof B 0.*
MiniSpecificPlatform
I partor ce8 name : String
< Jll mountedon 0.1 0.* 0.*
CP4 < locatedAt
1.* 0.1 a
DataCenter 0.1 <l ‘ocatedat
) 1.+ | wordWidth : Integer name : String
« fits . internal : Boolean

y : Memorysi:
clockRate : FrequencyValue public : Boolean

availability : OrdinalAssessment
H id : String

Ml serialNo : String

Figure 3.1: Meta Model Excerpt: Platform, for constraints, cf. Tab. 3.7

3.1 Main IT Landscape Elements

In what follows, we provide an overview of the IT landscape elements whose analyses are
supported by the ITML, with a focus on the scenarios introduced in Section 2.1.1-2.1.3.

Platform. Computer hardware, whose resources are made accessible via operating sys-
tems, constitutes a basic element of an IT infrastructure. To represent it, we define a con-
cept ‘specific platform’, cf. Fig. 3.1. In a simplified representation, a specific platform (cf.
SpecificPlatform) consists of a hardware platform, encompassing among others a proces-
sor along with main memory, and an operating system. In addition to physical platforms, there
are also virtual platforms, i.e., those that are simulated by software. Thus, we differentiate
between a physical platform (cf. HardwarePlat form), provided in some case, and a virtual
one (cf. VirtualPlatform, Fig. 3.1), which can be realized by a virtual machine. A virtual
machine is conceptualized in the ITML as a specialization of an abstract meta type Software,

discussed further in this section, cf. Figs. 3.3-3.5.

An OperatingSystem is a specialization of the abstract meta type Software. Following

Tanenbaum and Bos (2014), operating systems, on the one hand, manage the different parts

21

3 Language Design: Abstract Syntax and Semantics

of the system efficiently, i.e., provide “a clean abstract set of resources instead of the messy
hardware ones and managing these hardware resources” (p. 4), on the other hand, the job of the
system is “to provide the users with abstractions that are more convenient to use than the actual
machine” (p. 80) (e.g., processes, files). An operating system has an operating system kernel
(modeled as a language level type, OSKernel), responsible for managing communication
between hardware and software, memory, cache, hard drive, etc. Kernels vary widely in
function and scope, and significantly affect their operating system’s capability. Operating
systems come in different types (e.g., embedded, real-time, multi-user), and have various

features. For details regarding properties of an operating system, cf. Figure 3.3.

Table 3.1: Language specification: Comments on Hardware Platform and related concepts, cf. Fig. 3.1

Concept: Hardware | Description: Hardware Platform, next to Virtual Platform, is a basic element of

Platform an IT infrastructure. Resources offered by a hardware platform are made accessi-
ble via an operating system. It consists, among others, of a central processing
unit along with a main memory.

Supertypes

Platform

Attributes on the type level

name String Allows for stating the name of the hardware platform.

maxNoOfProcessors| Integer Allows for stating the maximal number of processors sup-
ported.

noOfExemplars Integer It is an obtainable attribute allowing to state how many

exemplars of this specific hardware platform type there
are.

Attributes with reference to the instance level

actMemory MemorySizeValue Allows for stating the size of the memory (e.g., 1 GB).

obtained Date Allows for stating when the specific exemplar of a hard-
ware platform has been obtained.

serialNo String Allows for stating the serial number of a hardware plat-

form instance.

Selected Associations

fits and [i]
mountedOn
(source: CPU, target:

HardwarePlatform)

15-1,%(fits)
1,*-1,1 (mountedOn)

Allows to state what type of CPU fits to a specific type
of a hardware platform as well as, on the instance level,
what instance of a CPU has been mounted on some specific
exemplar of a hardware platform.

fitsTo and

(il

builtInto (source:

HardwarePlatform,

target: Case)

1,*-1*(fitsTo)
01-1,1
(builtInto)

Allows to state what case a specific type of a hardware
platform fitsTo (on a type level), as well as, on the instance
level, what case some specific exemplar of a hardware
platform has been built into.

22

IT Modeling Language (ITML): A DSML for Supporting IT Management

Sometimes a specific platform does not contain a complete operating system, but only
the operating system kernel (0OSKernel), which handles input/output, memory manage-
ment etc., cf. (Tanenbaum and Bos 2014). Such a platform is shown in the meta model as
MinSpecificPlat form. This concept is important in connection with the installation and
deployment of software, cf. Fig. 3.8.

Table 3.2: Language specification: Comments on Operating System Kernel, cf. Fig. 3.1

Concept: OSKernel | Description: Language Level Type. Kernel is a core feature of any operating
system. It manages communication between hardware and software, memory,
cache, hard drive etc. Kernels vary widely in function and scope and significantly
affect their operating system’s capability.

Attributes

name String Allows for stating the name of the kernel.

version String Allows for stating the version of the kernel.

type Enumeration Allows for stating the type of the kernel, such as: mono-

lithic, hybrid, microkernel, nanokernel, exokernel.
multiTasking Boolean Allows for stating whether the kernel supports multitask-
ing.

multipleArchi- Enumeration Allows for stating whether the kernel supports multiple

tectureSupport CPU instruction sets and micro architectures.

Selected Associations

partOf (source: | 1,1-0% Allows to state that a specific kernel is part of an operating

OSKernel; target: system.

OperatingSystem)

partOf (source: | 1,1-0,* Allows to state that a specific kernel is part of a mini spe-

OSKernel; target: cific platform.

MiniSpecific—

Platform)

With respect to the relation between software and platforms, it is important to distin-
guish two cases. First, software may be executable on some kind of platform type. Sec-
ond, software may be executed on a certain platform. The first case is represented by
the association executableOn between ApplicationAndSystemSoftware (being a spe-
cialization of Software, cf. also Fig. 3.5) and some SpecificPlatform. The second
one is represented by the intrinsic, i.e., instantiated at My, association runsOn, between

ApplicationAndSystemSoftware and some SpecificPlatform.

A physical platform can take different forms. It can be mounted in a case (Case) that is
intended for either stationary or mobile use. Such physical platforms are often also mounted
in racks, each of which has a certain number of slots, cf. Fig. 3.1. Physical components of a

23

3 Language Design: Abstract Syntax and Semantics

hardware platform (cf. HardwarePlat form), such as special case types, are only relevant, if
the corresponding devices are managed in the company. If platforms are located in a separately
operated data center, this physical element (like the case) can be abstracted away.

<« connectableTo
T

CH1 name : String <« requires

< n connectedTo isPowerlndependent : Boolean 0.*
isNetworkCompatible : Boolean
0..* |l serialNo : String

introduced : Date 0..* L | n uses
mayHaveAccessTo nm_ o
Y > requiredAvailability : Assessment
0..* ||l actualAvailability : Assessment dedicatedTo p»
0.* 0.1 0.% CH2 H actualProcurementCost : MonetaryValue

H actualMaintenanceCost : MonetaryValue
lifecyclePhase : lifecyclePhase
0.* n accessTo p» [d] noOfExemplars : Integer 0..%
0.*% 0..* 0..4 avgPerformanceAssessment : Assessment .
B actualPerformanceAssessment : Assessment 0.. has B

CN2 connectedTo P A 0.* Location
0.* - n isLocatedin P> Ezl;‘lnd?ngsnsl?ﬁng
mayHaveAccessTo P 0.1 safetyLevel : String

0.* 0.* 0..* external : Boolean

Vendor

PeripheralDevice

InfrastructuralHardware

ExternalStorage
<« [[rrovidesAccessTo 0.* o 4' storageCapacity : SizeValue

H isActive : Boolean !SMOb'le : Boolean
isStandAlone : Boolean

n providesAccessTo P Scanner Printer
pagesPerMinute : Integer

N resolution : Integer
resolution : Integer type : String

doublesided : Boolean doubleSided : Boolean
sheetFeeder : Boolean colour : Boolean

pagesPerMinute : Integer

Figure 3.2: Meta Model Excerpt: Hardware, for constraints, cf. Tab. 3.7

Peripheral Device and Infrastructural Hardware. To support the variety of analysis scenar-
ios from Chapter 2, one can distinguish between different types of hardware devices according
to their primary purpose, architecture, or a role to a user. From a modeling perspective such
differentiation can be expressed by using relevant meta types, by using generalization/special-
ization, or by using an enumeration attribute of the generic meta type.

The excerpt of the meta model in Fig. 3.2 shows a possible conceptualization of a hardware
device. Traditionally a hardware device has some Location (a language level type), is
connectable to some SpecificPlatform or may be accessed to by it. A software artifact
may require some hardware device, and actually use some device on the instance level (cf. an

intrinsic relationship uses).

We specifically differentiate between PeripheralDevice (with such specializations as,
e.g., Printer or External Storage) and InfrastructuralHardware (with such possible
specializations as, e.g., Access Point or Router). Please note that each meta type has a
set of dedicated attributes and specific relations. And so, PeripheralDevice can be
accessible via a Network or be accessible only via some specific SpecificPlatform:

a PeripheralDevice may be connectableTo (on the type level) or connectedTo (on

24

IT Modeling Language (ITML): A DSML for Supporting IT Management

the instance level) to some SpecificPlatform. InfrastructuralHardware may in turn
provide an access to a Network.

Table 3.3: Language specification: Comments on Hardware Device, cf. Fig. 3.2

Concept: Hardware | Description: a hardware device which a platform can interact with, and which

Device typically is not a core part of the platform.

Subtypes

Peripheral device, Infrastructural device

Attributes on the type level

name String Allows to provide a name.

isPower-— Boolean Allows to state if a separate power source is necessary.

Independent

isNetworkCompati-| Boolean Indicates compatibility with a given network.

ble

regAvailability | OrdinalAssessment Allows to express the required availability of a hardware
device.

lifecyclePhase LifecyclePhase Indicates the life-cycle phase of a hardware device, ranging
from acquisition, operation, to disposal.

noOfExemplars Integer Used to track the number of hardware devices.

avgPerformance- Ordinal Assessment Expresses the estimated average performance.

Assessment

Attributes with reference to the instance level

serialNo String Allows to indicate the unique serial number.
introduced Date Expresses the date a hardware device has been introduced.
actAvailability Ordinal Assessment Allows for expressing the actual availability, which in an

analysis can be compared to the required availability (in
support of the availability analysis scenarios from Chap-

ter 2).
actProcurement- MonetaryValue Can be used to specify the upfront investment for acquir-
Cost ing a hardware device.
actMaintenance- MonetaryValue Allows for specifying the maintenance cost of a hardware
Cost device.
actPerformance- Ordinal Assessment Expresses the actual performance of a hardware device
Assessment (forming input to the attribute average performance on the
type level).
Selected Associations
conectableTo 0-0,* with SpecificPlatform.
[i] connectedTo 05-0,1 with SpecificPlatform.
mayHaveAccessTo 05-0% from SpecificPlatform.
[i] accessTo 05-0% from SpecificPlatform.
Constraints
CH1 A hardware device may be connected to a specific platform being an instance of
a type of a specific platform that a hardware device in question is connectable to.
CH2 A specific platform may access a hardware device being an instance of a type

that a platform may have access to.

Continued on next page

25

3 Language Design: Abstract Syntax and Semantics

Table 3.3 - Continued from previous page

CH3 A software uses a hardware device being an instance of a type that it requires.

CN2 A specific platform is connected to a network being an instance of a type that

the given specific platform may have access to, cf. Fig. 3.7

Table 3.4: Language specification: Comments on Peripheral Device, cf. Fig. 3.2

Concept: Description: auxiliary device which a platform can interact with, and which
Peripheral typically is not a core part of the platform.

Device

Supertypes

HardwareDevice

Subtypes

Printer, Scanner, ExternalStorage

Attributes on the type level

isMobile Boolean Indicates how mobile the peripheral device is (e.g., in
terms of size, or mass).

isStandAlone Boolean Indicates the autonomy of a peripheral device, e.g., the
need for additional power bricks for external hard drives.

Attributes with reference to the instance level

isActive Boolean As implied by its name, this attribute indicates the activity
status of the peripheral device.

Selected Associations

providesAccessTo | 0,-0,* Allows to express that a network can provide access to a
(from Network to peripheral device.

PerhiperalDevice)

Software. Software is ubiquitous and, at first glance, one may have a clear idea of what
constitutes software. Whereas hardware is usually considered to consist of tangible objects
(e.g., integrated circuits, circuit boards, cables, powers supplies, memories, card readers),
software consists of algorithms (detailed instructions on how to do something) and their
computer representations, cf. (Tanenbaum 2006, p. 9). However, on closer inspection the

conceptualization of software is by no means trivial.

The excerpt of the meta model in Fig. 3.3 shows a possible conceptualization of soft-
ware. Here a particular software is represented as a type that is instantiated from one
of the concrete subclasses of the abstract meta type Software, implemented using some
ProgrammingLanguage. An Installation is required to use software. The software

is installed from its file representation, whereby different forms of representation have to

26

IT Modeling Language (ITML): A DSML for Supporting IT Management

basedOn B>

[11
1.1
I InterfaceDescriptionLanguage | Programminglanguage

| <« specifiedWith

* 1.1 ‘ <« uses
<« definesUseRightsFor 0.. 1%
Agreement competitorOf P -
fersTe
A refersTo volumeDependent : Boolean 0.% 0.%
0..* | created: Date competitor
validUntil : Date 0.* P &
1.1 Y Vendor partner <« writtenIn
License name : String artnerOf
. . characteristics : String [g, *
firstDefined : Date domain : String S5 0%
4 UseAgreement market : String
[| maxNumOfUses : Integer 0.1 0.1 0.% Library
—| costPerPeriod : MonetaryValue name : String
PropLicense « has interfaceRepository : Boolean
implementationRepository : Boolean
maxNoOfUSes : Integer - dynamicLink : Boolean
costPerPeriod : MonetaryValue UserAgreement X . changePolicy : String
maxNumberOfUsers : Integer defiinesUseRightsFor > functionLibrary : Boolean
costPerUser : MonetaryValue classLibrary : Boolean
] FOSS componentLibrary : Boolean
maxNoOfUSes : Integer offeredBy 0.* 0.*
costPerPeriod : MonetaryValue usedLibrary ~fepresent|nglLibrary
SoftwareSuite
0-1 [hame : String e

sl

description : String
[noSoftwareArtifacts : Integer
introduced : Date

.4 usedSoftware

P 3 belongsTo
SoftwareCommunicationRelation 0.* < N Software
description : String o name : ?tnn_g
isMandatory : Boolean CS2 ..* | version : String
frequency : SimpleAssessment missionCritical : Boolean
requiresManualActivity : Boolean 0.* <« partof part 'quVaﬂa_blh(_‘l{ : Cl)l'dlljfﬂAISSESSme"t
communicationProtocol : communicationProtocol refersTo P> L+ n act v
dataEncryption : dataEncryption referedSoftware | feCyclePhase : Llfe‘cchePhase I
transportEncryption : transportEncryption Y eCosts : MonetaryValue
R 0 cS3 - nlntr(?SIUCed : Date .
0.. 0.% : referee C : SimpleA it
 referredgy 1.1 ig ionale : String name : String
« reads customMade : Boolean dissemination : Ordinal,
Cs12 0..*| avePerformanc: : Ordinal 1t signature : String
<« writes |l actPerformanceAssessment : OrdinalAssessment H lastUsed : TimeStamp
FileExchangeFormat 0..#| sourceCode : Boolean usageFrequency : OrdinalAssessment
scalabilitylssue : Boolean protocol : String
0.1 name : String name : String substitutability : SimpleAssessment semantics : OrdnalAssessment
doclnstStructApproach : {CSV, XML, ...} extens‘ion - Strin adaptVendorRelated : SimpleAssessment documentationAvailable : Boolean
docTypeSpecApproach : {XMLSchema, DTD, ...} H created " Dateg adaptabilityArchitectureRelated : SimpleAssessment | o 1 provided APl | &
L [lastUpdated : Date id 0.*
0.* [l modified : Date provides P>
DocumentTypeExchangeStandard H size : SizeValue 0.1 e or ‘ o defines b
name : String
i ination : Ordinal storedOn
0.1
<« storableOn
Synch API
DataStructure ynchronous!
- H hasCompleted : Boolean
name : String
specifiedin p»{ description : String AsynchronousAPI
frequencyOfChange : SimpleAssessment <« basedOn eventBased : Boolean

1.1 | business e : Simpl nent Installation
abstractionLevel : SimpleAssessment 1%

size : Integer

[@] number : Integer
selfContained : Boolean
H firstModification : Date
H lastModification : Date

ContainerlmageFile ImageFile ArchiveFile
usedML
CS6 o*
I MiddlewarelnterfaceRepository provides P> 0.* _
— i 0.% o
[numofentries : Integer o providedWi Middlewarelnterface definedM!
semantics : OrdinalAssessment | o « « define:
11 <« partOf represent : String definedMI

Figure 3.3: Meta Model Excerpt: Software, for constraints, cf. Tab. 3.7

be taken into account. In addition to executable files (ExecFile), special archive files
(ArchiveFile), such as JAR files for Java programs, should be considered. There are also im-
age files (ImageFile) that contain a binary, machine independent, but not directly executable,
representation of a program. Finally, container images (ContainerImage) are files which, in
addition to the actual software, also contain the resources required by the software, so that
their execution by a container engine (ContainerEngine) requires only a minimal specific

platform, cf. also the deployment excerpt of a meta model, Fig. 3.8.

27

3 Language Design: Abstract Syntax and Semantics

A Software is typically installed on some file management system (cf. FileSystem). Soft-
ware is then represented as one or more files in a form that allows for its execution. Alter-
natively, the installation can take place in a DataCenter. In the latter case, one can abstract
away from the FileSystema Software has been installed on, since this is the responsibility
of the DataCenter. When a data center hardware and software is used to make (application)

software accessible over interfaces, we speak of a so-called “cloud”.

Whereas one could introduce here common categories of cloud services, such as Software as
a Service (SaaS), Infrastructure as a Service (1aaS), and Platform as a Service (PaaS), this would
however considerably increase the complexity of analysis scenarios considered. Therefore,
although modeling of “cloud” aspects is certainly a problem area of its own, we decided to
follow a pragmatic solution, and account for cloud-based elements via an attribute inCloud.
This has the advantage that cloud-based application systems can be modeled and classified in

the IT infrastructure in the same way as conventional applications.

Software can have an interface for other programs, which can be used to access, or possibly
modify, the functions it provides. Such an interface, also referred to as an API (“Applica-
tion Programming Interface”), can be synchronous or asynchronous. Therefore, a Software
provides and/or uses some API, which in turn is specialized into Synchronous and
Asynchronous one. In order to depict dependencies between software, a communication rela-
tion, which may be based on API and use some exchange format, allows to specify how
data is being exchanged. For instance, one may state whether there is a need for man-
ual activity, or what is the frequency of communication. Furthermore, DataStructure
allows for a high-level description of the exchanged data, a kind of common concepts,
as well as expected frequency of change, business relevance and abstraction level. In ad-
dition, a Software may define (and also use) a MiddlewareInterface, which is de-
fined using an InterfaceDescriptionLanguage, and is provided by some Middleware.

MiddlewareInterfaces are stored in aMiddlewareInterfaceRepository.

Additional dependencies between software artifacts are represented by the relationships
requires (Software requires Software), and partOf providing a possibility to model
a system/complex software type offered as one product. Finally, a software artifact may be

distributed (be part of) a software suite (cf. Software belongsTo SoftwareSuite).

The legal use of Software requires a License. To this end, one can, roughly speaking, dis-
tinguish two types of License. Proprietary licenses (PropLicense in Figure 3.3) are issued
individually by software vendors. Open Source Licenses, also called FOSS (“Free and Open

Source Software”), exist in various forms, from which we abstract in this research report.

License Agreement s refer to a license type and establish the conditions of software use, like
the maximum number of concurrent users. Such conditions are unusual in the case of FOSS,

but they are still possible.

28

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.5: Language specification: Comments on Software, cf. Fig. 3.3

Concept: Software

Description: A detailed set of instructions that tells a hardware (platform) how

to carry out a certain task.

Subtypes

OperatingSystem, ApplicationAndSystemSoftware, Component, Webclient, Middleware

Attributes on the type level

name String Allows for specifying a name.

version String Allows for specifying a version.

missionCritical Boolean Indicates if the software is mission critical.

regAvailability Ordinal Assessment Indicates the required availability of the software (cf. the
analysis scenarios in Chapter 2).

maintenanceCosts | MonetaryValue Indicates the maintenance costs of a software.

scalability- SimpleAssessment Can be used to express the estimated scalability of a soft-

Assessment ware (cf. the analysis scenarios in Chapter 2).

designRationale | String Can be used to denote the expressed rationale standing
behind a software.

customMade Boolean Used to express if the software has an off-the-shelf charac-
ter.

avgPerformance-

Assessment Ordinal Assessment Used to express the average estimated performance of a
software (in line with the analysis scenarios from Chap-
ter 2).

sourceCode Boolean Indicates availability of a software’s source code.

scalabilityIssue | Boolean Allows, in a rudimentary manner, to indicate if a scalability
issue exists with a software.

substitutability | SimpleAssessment Indicates the extent to which a software can be substituted.

adaptVendor- SimpleAssessment Indicates the adaptability as far as the vendor is concerned.

Related

adaptArchi- SimpleAssessment Indicates the adaptability as far as the architecture is con-

tectureRelated cerned.

Attributes with reference to the instance level

actAvailability | OrdinalAssessment Allows for expressing the actual availability (and thus also
for a comparison to the required availability on the type
level, cf. analysis scenarios in Chapter 2).

introduced Date Indicates the date on which a software has been intro-
duced.

actPerformance-— Ordinal Assessment Indicates the estimated actual performance of a software

Assessment (in line with the analysis scenarios from Chapter 2).

Selected Associations

partOf 1 -0% with Software; a software may be part of another software.

uses 0*-0* with API, Library, MiddlewareInterface, pointing that a
software artifact uses an API, a Library or a Middlewareln-
treface, respectively.

has 0*-0,1 with Vendor; allows to point to a vendor of a software

artifact.

Continued on next page

29

3 Language Design: Abstract Syntax and Semantics

Table 3.5 - Continued from previous page

referredBy 1,1-0% with SoftwareCommunicationRelation; SoftwareCommu-
nicationRelation allows to define software artifacts commu-
nicating, as well as characteristics of this communication.

provides 0,1-0% with APL; allows to define APIs provided by a software
artifact.

belongsTo 1,-0% with SoftwareSuite.

Constraints

Cs1 Software cannot use itself.

CS2 Software cannot be part of itself.

CS3 Software cannot communicate with itself.

CS7 Software can be stored only on specific replication files that software, on the type

level, is storable.

CS8 Software cannot use a library that it represents.

Software may use a Library. A library is a collection of non-volatile resources, such as
implementations of functions or classes. A Library has a well-defined interface that allows

for accessing its resources.

<« uses
CS10
0..* | usedService 0.*
uses B> <« refersTo
0.* L
isExternal : Boolean SeviceC
. 0. authorizationType : AuthorizationType eviceContract
provides P> 0.. avgResponseTime : OrdinalAssessment name : String
avgReliability : OrdinalAssessment validFrom : Date
avgAvailability : OrdinalAssessment validTo : Date
avgUserSatisfaction : OrdinalAssessment [l currentStatus : ServiceStatusCategory
serviceCategory : {external-customer, internal-customer, supporting}
name : String 1% 1.1
descriptiqn :_S.tring) « includes « includes
[actAvailability : OrdinalAssessment
[actResponseTime : OrdinalAssessment 0.*
inCloud : Boolean
provides P> ContractElement Eeivicetevel
ol . TP parameterName : String
g (clil providedAPI <« provides description : String targetValue : Double
£ unit : String
3 0.* AP o
X - 0..1|providingWSs
§ 0.* usedAPI —— uses P
0.1 0.* ses 0.* definition : String
u CS09 isRestful : Boolean
0 are 0.1 URI : String 0..*
o < uses 0% 0% o
WebServer
e P
0.*)
writes P <« writes
0.*
reads p 0.* <« reads
0.*

Figure 3.4: Meta Model Excerpt: IT-Service, for constraints, cf. Tab. 3.7

Functions of Software may use or provide some Services. A service, in turn, offers some

function that can be invoked over the network. Please note that we consciously opt here for a

30

IT Modeling Language (ITML): A DSML for Supporting IT Management

narrow service definition, which focuses on the technical — software — side only. In line with the
notion of service-orientation (Papazoglou and Van Den Heuvel 2007, p. 390), the service notion
abstracts away from how the function offered by a service is realized. Such a service is usually
characterized by a specific interface that typically abstracts from a specific programming lan-
guage and thus, also from its specific implementation. A subtype of a service is a WebService,
which uses a WebServer, providing or using some API The function offered by a service

(expressed through, e.g., a service level) can be defined within a ServiceContract.

Table 3.6: Language specification: Comments on Service, cf. Fig. 3.4
Concept: Service Description: An IT artifact, usually a piece of software, offering some function

that can be invoked over the network. The function offered by a service and its

characteristics may be defined within a service contract.

Subtypes

Web service

Attributes on the type level

name String Allows for specifying a name.

description String Allows for specifying a description.

isExternal Boolean Allows for expressing if a service is external to an organi-
zation.

authorizationType| AuthorizationType Allows for expressing the type of authorization needed to
access a service.

avgResponseTime Ordinal Assessment Allows for expressing the average response time.

avgReliability Ordinal Assessment Allows for expressing the average reliability.

avgAvailability | OrdinalAssessment Allows for expressing the average availability (e.g., to sup-
port the analysis scenarios discussed in Chapter 2).

avgUserSatisfact-| OrdinalAssessment Allows for expressing the average user satisfaction with a

ion service.

serviceCategory | external-customer, Allows for expressing the service category.

internal-customer,

supporting

inCloud Boolean Allows to state whether a service is offered as a cloud-
based service.

Attributes with reference to the instance level

actAvailability | OrdinalAssessment Allows for expressing the actual availability of a service
(it can be then compared to its average availability on the
type level for analysis purposes).

actResponseTime | OrdinalAssessment Allows for expressing a service’s actual response time (it
can then be compared to its average response time on the
type level for analysis purposes).

Selected Associations

uses 0*-0* with oneself; a service may use another service.

uses (source: | 0,*-0* Points to what software uses the given service.
Software, target:

Service)

Continued on next page

31

3 Language Design: Abstract Syntax and Semantics

Table 3.6 — Continued from previous page

provides (source: | 0,1-0* Points to what software provides the given service.
Software, target:

Service)

refersTo (source: | 0,—1% Allows to attach one or more service level contracts to a
ServiceContract, service.

target: Service)

Constraints

CS10 ‘ A service cannot use itself.

As already mentioned, a particular software is represented as a type instantiated from one
of the subclasses of the abstract meta type Software. Please note that taking into account
the identified analysis scenario, a classification of a generic concept like software seems to
be necessary. However, software can be categorized with regard to its primary purpose,
architecture (e.g., client/server), visibility to a user (e.g., back- end, front-end) or by looking at
its role. From a modeling perspective such differentiation can be modeled in different ways: by
using relevant meta types, using generalization/specialization, using an enumeration attribute
of the generic meta type (e.g., type of software), or as a role. Taking into account identified
requirements as well as analysis scenarios, we have decided to account for this mostly by
using the specialization relation (particularly subtypes of Software). This is visible in Fig. 3.5,
where the hierarchy of software artifacts, starting from abstract software concepts, through,
e.g., application and system software, to application server, IT management tools and others, is
presented. In addition, by taking advantage of of enumerations, we have offered a possibility
to assign an application software to a software category. Possible instances of software category

may be, among others, Enterprise Software, Office Software.

Table 3.7: Language specification: Comments on Server, cf. Fig. 3.5

Concept: Server Description: A Server provides resources and functionality to clients (other
types of software), typically over a network as a response to a request from

aforementioned clients.

Supertypes

Application and Technology Software, Software

Subtypes

Web server,Application Server,File Server,Database Management Server

Attributes on the type level

encrypted Boolean Allows for expressing if the server access is encrypted.

access

Attributes with reference to the instance level

address String Indicates the address at which a particular server can be

accessed (e.g., an URL).

32

IT Management

mng

A DSML for Supporti

IT Modeling Language (ITML)

0110302uu0)sey P

uea|joog : paINqLISIp
Jan13sTSINGA

Ueajoog : uondAnus
anjepdzISAIOWaIA © 2ZIS3[I4XeW
19891U] : S3|I{ONXEW

J3NI3S3)14

J9MI9SGIM

0]55920ysapinoid

uea|oog : ssaddypardAoua

ueajoog : Buluunys! |l
8uls : |apoNIuBUOdwod

1anasuoned)ddy

70

llemaJijjeuosiad

Buis : ssalppe [l

emally

llemanpomIaN

ueajoog : aAdYS! Il
Ue3|00g : 133{I43U33U0d
ueajoog : Jay|i4Axoud

28ensuelgg

T o o

J022.39p

wsipesedgq : wipesed
ueajoog : Alowapy

wajsAsiuawaseuepasegeieq

saJinbas ueajoog : a|qelja4
| Iqe!]
ueajoog : L
« T -0 juawAojdagalemyos
duersawi] : paimboe [*
1pJO : $1502

JuawssassyjeulpQ : Ajenb joaseds9%e) B .0

10 : Aupgent ueajoog : u

Bus : @24n0s I N

ueajoog : aAleaudd
ueajoog : AoNIeW
Buns : sjeuones

ueajoog : [eUIAIXS

ndujeieq

waysAsandnpu|

« Jored

Ueajoog : BueTgapappagua
V_LOBWEN‘ER“:Wam_m‘_wL

3iemyosjeinionisesu)

uonejjeisuj

asnoyasepmereq

sasn p

<« Joued
{ jo 1ed
« s3sn
T°0 170 T°0

30K 21EM3IPPI - 90AY

ueajoog : Juswadeue|yUOIIESUEL)
uea|oog : Juawadeue\peo|
©3j00g : snouoiypuAse

ueajoog : snounoJypuhs

Buwis : jooojoud

21eM3IPPIN

« Agpaindaxa

T [+70

Buwis @ j020j0ud

Bus : adAy

juauodwo)

i <=

_ 28enSuejuondudsagadepaiu| _

Ue2100g : AoUaLINDENBIP
uea|0og : ssajuolssiwIad
8uLs : [9poNoIdAId
ueajoog :

8uing : sjeuones

198pa1painquy

qnd

L0 sioyuow p

Suuoyuopy

uea|oog : aARdys! [l
ueajoog : wioge|dnnw

ueajoog : spodaysaleasd

|oojjuawadeueiy 1|

Buns : yied @
Suus : yunazis [l

19823 : azis [l

ueajoog : pnojoul

ueajoog : uondAnua
anjepazISAIoWa : 3zIS3|14xeWw
12831y : s3|IJoNXEW

30A1UONEINUAYINY : S0ALUONEINUAYINE
uea|oog : awi][eas
ueajoog : pappaquia

ueajoog : paje|dwa) [l A

uea|oog : paINGuU:
ueajoog : JasnANW
Ajwes-s0 : Ajiwes-so
ueajoog : Supjsennw
waysAsSunesado

JUBLUSSISSY|UIPIQ : UOIIIRISES)OIIURLIA
JUBWISASSY|BUIPIO © UONDRJSIIESIASNIAE

leulpJo : 03p0d
ueajoog : |3poNeIep

aiemyosuonediddy

UE3]00g : JaAIASSYSIoR
: JJ0j43u0ned) 159
UE3|00g : 3|qE|IBAYUONEIUSWNIOP

adA uonesnuayny : adAjuonesnuayine
ueajoog : JasnuINW

aiompfoswaisAspuyuonniyddy

ueajoog : poddnsiaisn|d

ueajoog : Suileasoine

ueajoog : Bupue|eqpeo]

sujduziauleiuo)

ueajoog : 92ual|IsaYoINe
ueajoog : Suijeasoine

J0jes3saYIQIaUIRIU0)

8uLs : uondudsap

E=1

Buns : saweu eyuypaddesm
uonein3uo)3IeMa|ppIN
sdeam -
-0 > 170
« 55N +0

<« 01s3uoj2q

DS ‘WYD ‘dy3} : adhy

waysAgasudiaug

Buws : uondudsap
8uns : aweu

Aio3a1e731EMY0S5

3.7

ints, cf. Tab.

hy, for constra

lerarc

Software H

Meta Model Excerpt:

Figure 3.5

33

3 Language Design: Abstract Syntax and Semantics

Table 3.8: Language specification: Comments on Application Software, cf. Fig. 3.5

Concept: Description: Application Software provides a functionality to the end user,
Application- different from functionality required to run a system itself.

Software

Supertypes

Application and Technology Software, Software

Subtypes

e.g., EnterpriseSystem, IT ManagementTool,DistributedLedger, DataWarehouse,

InductiveSystem

Attributes on the type level

avgUserSati- Ordinal Assessment Allows for expressing the average user satisfaction.

sfaction

varianceOfSati- Ordinal Assessment Allows for expressing the variance of user satisfaction.

sfaction

dataModel Boolean Allows for expressing if a data model exists for the Appli-
cation Software.

codeComplexity Ordinal Assessment Allows for expressing the code complexity of the Applica-
tion Software.

inCloud Boolean Allows for expressing whether the given application is
cloud-based.

Selected Associations

has 0-0% with SoftwareCategory.

Please note that as part of the mentioned hierarchy of software concepts, in order to account for
systems that make use of inductive approaches, we introduce the concept InductiveSystem.
InductiveSystem, being an ApplicationSoftware, is an abstraction over software ap-
plications relying on machine learning approaches. Instead of programming the solution
directly, a machine learning algorithm follows a data-based approach, and based on training
data produces a solution program (called the learned model). Machine learning relies on
well-established algorithms from mathematics and statistics, such as, e.g., regression, bayesian,
or decision trees (Barber 2012; Deisenroth, Faisal, and Ong 2020).

Persistence. Figure 3.6 depicts our conceptualization of persistence. Here, two dedicated
software systems play a notable role. A FileSystem manages persistent data in the form
of files. DatabaseManagement Systems (DBMSs) manages data in the form of Databases,
which are typically structured in accordance with a database schema. A database can be stored

on a data management system, or directly on a physical storage medium (PhysicalStorage), so as

34

A DSML for Supporting IT Management

IT Modeling Language (ITML)

Persistence in the ITML — selected aspects
35

n 170 0]55922ysapinoad ueajoog : uoldAIdUD | .5 0)ssacdysapinold P
_ 19823U] : SasSEDJOWNU _ _ J128a3u) : sadA1Ayuzyoou > anjenszishiowaIN : 7isowew |* 0
_ ¢ uopaseq .
12PON3(q0 _ _ |apoeIeqa _ 19891 : Sa|IJONXEW
"0 ueajoog : paINquUIsIp
Sulis : sads T JaMI9STSINEA
Buins : aweu
ueajoog : aAnoe [l
ewsypsaseqeieq wsipesedgq : wdipesed | . *0 < vopareol [l 0
aleq : pareand 0 ueajoog : eyegmeu | * 0 I
uLs : aweu ueajoog : AJowaul
wJojie|dayidad: -
12pojenidasuoy I walsAsiuawaseuepasegeleq HEIdIBI9S 1 |
T —— ueajoog : uondAioua
%0 YIEmeIca <« JOddueisyl aN|BASZISAIOWDN : 9ZIS3|14Xew
<« uopaseq
joued p
*0 adeuois|eusaixy
*T 21e(Q @ paieasdIsiy 0]ssaysapiroid P “0
»| anjepAszISAIOWRN : dwnjoA « joued *
woJ4eieqsaresalsse p Sups : sweu | 70 uoparedol [l >
+'0 10
.0 aseqeleq « speas o0 T .0
dweysawn : unyise| [l *0 . aN|EASZISAIOWRIA © 9215 paIoE
1B0}4 : S}SOQUOIIIRIIXD « M *0 a1eq : payipow [l 0
{1ed’|Iny4} : porewoine +0 Sowm b ajeq : pareaso [l
jun(esodwa] : 29xd «0 -) 3uLs : Uolsuaxa sajeo||dads
$59204dU0NENXT 4 aeen -0 Suls : aweu « s H
tl : 8 0 *
Teso0g TSI ueajoog : Sue1gapappagqad o0 p— o n
ueajoog : ssado.d Ydomaweljhouaisisiad speal p » » 0
uea|oog : $32In0S P - *0 *0
A 3 0155906 «0
« 550 Joysodayela N

10 uopaiols = »

Figure 3.6

3 Language Design: Abstract Syntax and Semantics

to potentially increase performance. We assume that software reads data from and writes data
to either a file or a database. In the case of a database, one can access a database either directly
or indirectly through some kind of intermediate framework. The latter case is expressed by
the association uses between Software and PersistencyFramework. Since it will often
be important to know what database is used by a software system, the associations read
and write between Software and Database are to represent both cases, direct and indirect
access. The association uses between Software and PersistencyFramework only serves
to add the information that some, or maybe all, database accesses are done indirectly through a
persistency framework. An additional constraint ensures that a persistency framework can be
assigned to a software system only, if it is linked to at least of one of the databases the software
system writes to or reads from.

It may be irritating that File is represented by a meta type, while Database is a type only.
This is indeed not satisfactory, but it is, once again, a reflection of the limitations of (traditional)
meta modeling languages. One could either specify that a certain software system (not a
particular instance of it) writes data either to a particular file or to a type of file (which could
be expressed by the extension of the file name). The first alternative would be strange, since it
would, e.g., imply that a certain type of software like MS Word always writes to a particular
file. The second alternative is not convincing either, but is the lesser evil. It does not allow
assigning particular instances of a software systems to particular files. The use of intrinsic
attributes (created, modified, size) allows to express properties of particular files, but is, in the

end, a poor workaround only, as long as it is not possible to create instances from instances.

The associations between Software and Database represent a similar constellation. Never-
theless, we decided for a different option here. It is based on an assumption that is questionable.
Software systems of a certain kind that use databases are likely to use one (or a few) specific
instances only. First, they will often exist in one or a few instances only, e.g., an ERP system.
Second, even if there are a few instances, and this is the problematic part of the assumption,
they are likely using the same database. Therefore, Database is, different from File located
on M.

Distributed resources. Here, we focus on a set of dedicated (predominantly software, but
also hardware) components that allow to treat distributed resources, as if these are local
resources. In other words, these components allow for transparent access to distributed

resources (Tanenbaum and Bos 2014).

Networks, cf. Fig. 3.7, of which there exist several specialized types (like LAN, or WLAN),
offer a communication infrastructure to various platforms (SpecificPlat form) connected

by the network(s), which can be used by software running on these platforms.

36

IT Modeling Language (ITML): A DSML for Supporting IT Management

ek

0..*

prox<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>