
Thoughts on classification / Instantiation and generalisation / Specialisation

Frank, Ulrich

In: ICB Research Reports - Forschungsberichte des ICB / 2012

This text is provided by DuEPublico, the central repository of the University Duisburg-Essen.

This version of the e-publication may differ from a potential published print or online version.

DOI: https://doi.org/10.17185/duepublico/47059

URN: urn:nbn:de:hbz:464-20180917-135832-0

Link: https://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=47059

License:
As long as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage
only with permission, except applicable rules of german copyright law.

Source: ICB-Research Report No. 53, December 2012

https://doi.org/10.17185/duepublico/47059
http://nbn-resolving.org/urn:nbn:de:hbz:464-20180917-135832-0
https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47059

!"#$%&'&(%")*%&+,%-

!"#
!"#$%$&$'()*'!"(+*,-$%.'&"/
0%*$#12-($#%"(+*,-$%.

Ulrich Frank

ICB-Research Report No. 53

December 2012

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Klüver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

For more information visit us on the Web: http://www.icb.uni-due.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

53Thoughts on Classification / Instantiation
and Generalisation / Specialisation

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Die ! Forschungsberi ch te ! des ! Inst ituts !
für ! In format ik ! und! Wirtschafts info r 8
mat ik! dienen ! der! Darste l lung! vor läu8
f iger! Ergebnisse , ! d ie ! i . ! d . ! R . ! noch! für!
spätere !Veröffen tl ichungen !überarbei8
tet ! werden .! Die ! Autoren! s ind ! deshalb!
für !kr it ische!Hinweise !dankbar . !

All ! r ights ! rese rved .! No! part ! of ! th is !
report! may ! be! reproduced ! by! any !
means , !or ! translated . !

Contact : (

Inst itu t! für !Informatik!und!
Wir tschafts in format ik !(ICB) !
Univers ität!Duisburg8Essen ! !
Univers itätss tr. !9 !
45141!Essen!

Tel . : ! 0201818384041!
Fax : ! 0201818384011!
Email : ! i cb@uni8duisburg 8essen.de!

Author’s (Address: (

Ulri ch !Frank!
!
Inst itu t! für !Informatik!und!
Wir tschafts in format ik !(ICB) !
Univers ität!Duisburg8Essen !
Univers itätss tr. ! 9 !
D845141!Essen !

ulr ich. frank@uni8due.de !

!

The! ICB! Research ! Reports ! comprise !
preliminary! results !which !wil l !usual ly!
be! revised ! for ! subsequent ! pub lica8
t ions . ! Cr it ica l ! comments ! would ! be!
apprec iated !by !the!au thors . !

A lle !Rechte ! vorbehalten. ! Insbesondere!
d ie ! der ! Übersetzung, ! des ! Nachdru8
ckes , ! des ! Vortrags , ! der ! Entnahme! von !
Abbildungen ! und! Tabe llen ! – ! auch! bei !
nur!auszugswe iser!Verwertung. !

ISSN(186082770((Pr int) (
ISSN(186685101((Online) (

ICB(Research (Reports(

Edited (by: (

Prof . !Dr . !Heimo!Adelsberger!
Prof . !Dr . !Frederik!Ahlemann !
Prof . !Dr . !K laus !Echt le !
Prof . !Dr . !Stefan !E icker !
Prof . !Dr . !Ulr ich!Frank!
Prof . !Dr . !Michael !Goedicke!
Prof . !Dr . !Volker !Gruhn!
PD!Dr. !Chri st ina !K lüver !
Prof . !Dr . !Tobias !Kollmann!
Prof . !Dr . !K laus !Pohl !
Prof . !Dr . !Erwin!P. !Rathgeb!
Prof . !Dr . !Rainer !Unland!
Prof . !Dr . !Stephan!Zelewski!
!

“Die Beziehung eines Gegenstandes zu einem Begriffe erster Stufe,

unter den er fällt , ist verschieden von der allerdings ähnlichen

eines Begriffes erster Stufe zu einem Begriffe zweiter Stu fe .” 1

Gottlob Frege

1 “The relationship of an object to a first-level concept, it is subsumed to, is different from the, howev-

er, similar relationship of a first-level concept to a second-level concept.” (translation by U.F.)

 i

Abstract

Classification and generalisation are arguably the most important abstractions used in con-

ceptual modelling. From a software developer’s perspective it may seem that there is a clear
difference between classification and generalisation. However, this impression is deceptive.

It is indeed relatively easy to decide whether classification or generalisation – and instantia-

tion or specialisation respectively – is the better choice as long as models are considered on

the M1 layer only. However, as soon as higher levels of abstractions are included, as it is

characteristic for meta modelling, this decision can become very demanding. Starting with

focussing on obvious criteria to distinguish between classification/instantiation and general-

isation/specialisation, this report will first illustrate why these criteria become blurred on

higher levels of abstraction. Also, it will be shown that often neither generalisa-

tion/specialisation nor classification/instantiation is sufficient. Instead, there is need for fur-

ther abstractions. Against that background an approach to structure the problem is present-

ed. While it does not allow to strictly determine the decision between the two abstractions, it

provides guidelines which support the decision in a particular modelling context.

ii

Table of Contents

FIGURES .. III

TABLES .. IV

1 INTRODUCTION .. 1

2 OSTENSIBLE DIFFERENCES ... 1

2.1 BACKGROUND: CONCEPTS OF CLASS .. 5

2.2 DELEGATION .. 8

3 RAISING THE LEVEL OF ABSTRACTION ... 8

3.1 “FAKE” INSTANTIATIONS .. 9

3.2 MULTI-LEVEL INSTANTIATION/SPECIALISATION ... 10

4 AN ATTEMPT TO STRUCTURE THE PROBLEM ... 14

4.1 PROPERTIES AND FEATURES .. 14

4.2 AN EXAMPLE .. 15

5 PRELIMINARY CONCLUSIONS ... 21

REFERENCES .. 23

 i i i

Figures

FIGURE 1: EXTENSION OF A CLASS.. 5

FIGURE 2: ILLUSTRATION OF INTENTIONAL CONCEPT OF CLASS ... 7

FIGURE 3: ILLUSTRATION WITH SETS .. 7

FIGURE 4: FOSTERING COMPREHENSIBILITY AND INTEGRITY THROUGH SPECIALISATION AND DELEGATION 8

FIGURE 5: EXAMPLE OF "FAKE" INSTANTIATION .. 10

FIGURE 6: MULTIPLE LEVELS OF ABSTRACTION ... 11

FIGURE 7: POSSIBLE REPRESENTATION OF SELECTED CONCEPTS ... 11

FIGURE 8: ALTERNATIVE REPRESENTATION ... 12

FIGURE 9: IMPLICIT INSTANTIATION .. 12

FIGURE 10: ILLUSTRATION OF "AMBIGUOUS CLASSIFICATION" – ADAPTED FROM ((KÜHNE 2006), P. 378) 13

FIGURE 11: "ONTOLOGICAL" VS. "LINGUISTIC" INSTANTIATION (ADAPTED FROM (KÜHNE 2006), P. 10).......... 14

FIGURE 12: PARTIAL RECONSTRUCTION OF MULTI-LEVEL HIERARCHY ... 16

FIGURE 13: COMPREHENSIVE REPRESENTATION OF EXAMPLE USING INTRINSIC FEATURES 18

FIGURE 14: EMPHASIS ON INSTANTIATION .. 19

FIGURE 15: EXAMPLES OF LOW QUALITY ABSTRACTIONS .. 20

iv

Tables

TABLE 1: DECISION BETWEEN INSTANTIATION AND SPECIALISATION... 2

TABLE 2: CHARACTERISTIC CONSTRAINTS OF SPECIALISATION AND INSTANTIATION ... 3

TABLE 3: APPLYING CRITERIA TO DISTINGUISH SPECIALISATION AND INSTANTIATION 4

TABLE 4: CRITERIA FOR DECIDING BETWEEN INSTANTIATION AND SPECIALISATION .. 20

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 1

1 Introduction

The creation of conceptual models as well as the implementation of software systems rec-

ommend the use of abstraction concepts. It is directly related to the idea of conceptual mod-

elling: Instead of representing particular objects (instances), it is aimed at concepts, i.e. ab-

stractions that cover a range of objects of the same kind. This contributes to reusing models

for varying instance populations. At the same time it makes models robust against ever oc-

curring changes on the instance level. Defining concepts as abstractions over congenerous

objects corresponds to classification. Concepts can be built through generalisation, too. In this

case, the focus is on the commonalities of a set of classes. Classification and generalisation

are arguably the most important abstractions used in conceptual modelling. From a software

developer’s perspective it may seem that there is a clear difference between classification and

generalisation. Such an assessment is supported by the fact that object-oriented program-

ming languages provide distinct operations for defining classes, superclasses, specialized

classes and for instantiating objects. However, this kind of differentiation represents only

one side of the coin. Before one applies the operations offered by a programming language,

one needs to know which operation is most appropriate for a certain purpose, i.e. one needs

to be clear about the conceptualisation of the system to be modelled. As we shall see, respec-

tive decisions can be very demanding. First, distinguishing instantiation and specialisation

from a conceptual point of view is compromised by the fact that both, the relationship of an

instance to its class and the relationship of a class to its superclass, are usually referred to as

“is a”. This ambiguity of the predicate “is a” in natural language will often prevent a

straightforward distinction based on a simple linguistic analysis. Second, the conception of a

class in prevalent programming languages differs from the meaning we normally associate

with the concept of a class. This difference results in subtle, but substantial effects on the se-

mantics of instantiation and specialisation. Third, the distinction between both concepts is

further complicated, if a model is not restricted to the dichotomy of instance and class, but

allows for further levels of abstraction such as meta classes or meta types. The elaborate

analysis of classification/instantiation and generalisation/specialisation extends an earlier

report where the consideration was mainly restricted to two levels of abstraction (Frank

2011b).

2 Ostensible Differences

The following propositions illustrate the ambivalent use of the predicate “is a”:

“John is a student.”

“A student is a person.”

To adequately represent the corresponding relationships in a conceptual model, it is required

to decide in each case whether to represent it as instantiation or as specialisation. With re-

Ostensible Differences

2

spect to system modelling, it may be required to distinguish between the concept as it is used

in the relevant domain of discourse and its representation in a system. At first, we will re-

strict our consideration to prevalent system architectures that are limited to two levels of

abstraction, i.e. classes and instances. That means that every concept has to be mapped either

to a class or an instance. If, in this case, we consider the proposition “A is a B”, we only need

to decide for A and B whether to represent them as a class or an instance. Then, we can de-

termine, whether specialisation or instantiation are feasible. Table 1 shows the corresponding

decision table.

instance class
cl

as
s

in
st

an
ce

A
B

none none

Instantiation Specialisation

Table 1: Decision between Instantiation and Specialisation

Unfortunately, this kind of decision is not satisfactory. On the one hand, it is restricted to

formal feasibility and does not account for conceptual adequacy. On the other hand, it im-

plies deciding beforehand whether a certain object should be represented as class or as in-

stance. As far as the second aspect is concerned, one may argue that it will usually be clear

how to represent an object: If it is a particular occurrence of something, if should be repre-

sented as an instance. If it serves as an abstraction over a set of further objects, it should be

represented as a type. However, there are cases, where one needs to represent concepts as

instances – as a consequence of the fact that no more than two levels of abstraction are avail-

able. Consider the following example: “A lion is a mammal”. Even though the term “lion”
does not represent a particular animal here, it may make sense to represent it as an instance –

in order to model it as an instance of mammal. Hence, the decision about modelling some-

thing as an instance or a class may depend on the decision for or against using instantiation.

Therefore, further criteria are required to support the original decision between instantiation

and specialisation. One characteristic feature of specialisation is monotonic extension. It im-

plies that all propositions that hold true for a superclass hold true for its subclasses, too.1 It

also implies substitutability: An instance of a superclass can be replaced by an instance of a

1 Note that there are exceptions to this rule such as propositions that refer to the relationship between

superclass and subclass (“A is superclass of B”) or that refer to the state of instance populations (“A
has 138 instances”).

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 3

subclass without notice, i.e. without causing harm. Instantiation does no result in monotonic

extension. Propositions about a class do not have to apply to its instances. For example: The

proposition “Customer represents a class of customers” does not hold true, if “Customer” is
replaced by one of its instances. Substitutability is not an issue in case of systems with classes

and instances only, because instances cannot be further instantiated.

The natural language concept of instantiation and specialisation corresponds to respective

concepts in logic, where it is common to speak of “subordination” instead of specialisation
and of “subsumption” instead of instantiation (Wolters 1996). In both cases, the definition

refers to the concept of class. A class B is a subordination of another class A, if the elements

of B represent a true subset of the elements of A. For instance: The class “Student” is subor-

dinated to the class “Person”, if the set of instances of “Student” is part of the set of instances
of “Person”. Subsumption on the other hand describes a relation between an element and its
class: An element is subsumed to a class, if it is an element of the set represented by the class.

Similarly, in his analysis of concepts, Frege characterized subsumption as a relation between

a concept („Begriff“) and an object („Gegenstand“). A concept is defined by properties
(„Merkmale“) that allow distinguishing it from other concepts. Objects that are subsumed

under a concept are characterized by particular occurrences of the properties (“Eigenschaf-

ten”) the corresponding concept is specified with ((Frege 1892), p. 201). Subordination on the

other hand is a relation between two concepts ca and cb that satisfies two constraints. First, all

properties that are characteristic for ca are characteristic for cb, too. But not all properties of cb

are necessarily properties of ca (ibid, p. 202). Apparently, this aspect corresponds to inher-

itance. Second, every object that is subsumed under cb is subsumed under ca, too. This aspect

of Frege’s conception is similar to substitutability.

For instantiation it is characteristic that the set of all possible instances a class may have is

specified with the class (see 2.1). Specialisation, on the other hand, allows for adding an un-

limited number of arbitrary properties to a given set of properties. In Table 2, respective

characteristics of specialisation are opposed to those of instantiation. For this purpose, we

assume that B is specialised from A and D is an instance of C.

Specialisation Instantiation

Both, A and B are classes. C is a class. D is an instance (i.e. not a class).

Substitutability: Every instance of A can be

replaced by an instance of B without notice,

i.e. without jeopardizing system integrity.

Instances of D are not possible (because D is

represented as an instance).

A specifies only a part of the properties of B. All possible features of D are specified with

the properties defined for C.

Table 2: Characteristic constraints of specialisation and instantiation

Ostensible Differences

4

Applying these constraints to the above example propositions produces clear results (see

Table 3).

“John is a student.” Instantiation Specialisation

“John” represents an instance. “Student” represents a class.  

Substitutability: There are no instances of “John”. - 

All possible features of “John” are specified with “Student”.  

“A student is a person.” Instantiation Specialisation

Both, “student” and “person” represent classes.  

Every instance of “Student” qualifies as an instance of “Per-

son”. Hence, instances of “Person” can be replaced by in-

stances of “Student” without notice.

- 

“Person” specifies only a part of the properties that define
“Student”.

 

Table 3: Applying criteria to distinguish specialisation and instantiation

For those who are familiar with the use of an object-oriented programming language, the

above criteria may seem trivial. As long as we restrict the consideration to two levels of ab-

straction, instance and class, only, the distinction is indeed not much of a challenge – even

though the specific semantics is not always easy to determine as we shall see in the next par-

agraph. However, even with only two given levels of abstraction, modelling a particular

domain can be more demanding. Different from the above example, there are cases where it

is not clear whether to represent a concept as a class or an instance – with respective conse-

quences on the decision between specialisation and instantiation. For example: “Business
report” is meant to represent a class – not a particular report. This can be the case for “docu-

ment”, too. As a consequence, the proposition “business report is a document” could be rep-

resented as a specialisation relationship. However, it is also conceivable that “document” is
actually intended to represent a class of document classes, i.e. a meta class (see below). In an

environment that does not include meta classes, it may be an appropriate option to model

“document” as a class (i.e. to represent a meta class with a class) and “business report” as an
instance.

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 5

2.1 Background: Concepts of Class

With these definitions at hand, we could try to resolve the ambiguities of “is a”. However,
that would be premature for two reasons: First, the concept of class in prevalent program-

ming languages is different from the concept of class in logic (and in natural language as

well) – which has a substantial effect on the semantics of specialisation and instantiation.

Second, there is need to clarify how to interpret the term “element” or “object” respectively.

In logic, a class is defined extensionally, i.e. as the extension (set) of its potential instances.

Such a set-theoretic view has two implications. First, it suggests regarding the process of in-

stantiation as selecting an element of a given set – rather than creating it. Hence, regarding

instantiation as selecting an element from a given set would implicitly include the initializa-

tion of the element, i.e. the assignment of a particular state. Second, it implies that an element

of a class can be an element of other classes at the same time. In programming languages, a

class is based on an intentional definition2. In this sense, a class serves to specify the proper-

ties intended for all its instances. It includes an explicit instantiation procedure that allows

for creating particular instances from the class description. This conception can be illustrated

by thinking of a class as a template that allows creating instances by “punching” them out –

even though this would be an all too simplified view as we shall see. At first sight, it may

seem that the intentional and the extensional notion of class are the same and mark only dif-

ferent perspectives. They are, indeed, very similar. The intentional specification of a class

includes an implicit definition of its extension: The extension of a class with properties p1, p2,

.. pn is the product of the extensions of the properties: ext (p1) * ext (p2) … * ext (pn). Often, the

extension of a class will be huge – and much bigger than the number of meaningful instanc-

es, as the example of a simple class in Figure 1 illustrates:

name: String
inStock: Integer
price: Real

Product

length: 30; 26 letters
ext (name) = 2630 = 2.8 * 1042

length: two bytes
ext (inStock) = 216

length: four bytes
ext (price) = 232

ext (Product) = 2.8 * 1042 * 216 * 232  1060

Figure 1: Extension of a class

Also, as the example shows, an intentional definition may include extensional elements, too

– such as the specification of attributes. Nevertheless, there are two important differences.

The first relates to the differences of the instantiation process: While the intentional concept

2 Note that this use of the predicate “intentional” is not related to human intention. Also, it is extensional in the
sense that is implies the explicit specification of all properties that constitute the semantics of a class.

Ostensible Differences

6

implies a classification that is based on common properties and therefore allows for creating

instances according to this common schema, the extensional concept requires specifying a set

of instances. While these should share common properties, it would be sufficient for them to

satisfy the predicate that they are element of the same class. That makes the extensional con-

cept more flexible, may however compromise the quality of the abstraction that goes along

with classification. For example: A software system to support human resource management

requires an assessment of employees’ expertise using four predicates. An intentional specifi-
cation would require specifying a class “expertise” with properties that are characteristic for
all expertise levels and that allow for instantiating and initialising a particular kind of exper-

tise. For an extensional specification it would be sufficient to define the set of strings that

represent possible kinds of expertise: [“outstanding”, “very good”, “fair”, “poor”]. The se-

cond difference between the intentional and extensional concept has more severe implica-

tions. While an instance of a class that corresponds to the intentional concept – as it is used in

prevalent programming languages – is instance of one class only, an instance of a class that

corresponds to the extensional notion can be instance of many classes at the same time – like

an element of a set can be element of further sets. The specialisation hierarchy in Figure 2

shows a model that seems to be intuitive: The class “Person” is specialized into the classes
“Student” and “Employee”. The consequences of the intentional concept of class are illus-

trated by showing corresponding instances. Apparently, the intentional concept of class is

not the same that we use in natural language. We would regard it as bizarre, if somebody

who is a student would not be a person anymore. Figure 3 illustrates the difference with a

representation of the respective classes as sets: The extensional conception of class implies

that “Student” and “Employee” are true subsets of “Person”, which may overlap. Hence, a
particular element can be “Student”, “Employee” and “Person” at the same time. The inten-

tional conception, on the other side, implies three distinct sets – this corresponds to the im-

age of a template for “punching” out instances. Therefore, representing somebody both as a

person and a student would require two different objects – resulting in redundancy that

would jeopardize system integrity. As an alternative, creating an instance of “Student” could
go along with deleting the corresponding instance of “Person”. In that case, it would not
only be required to transfer the state of the “Person” object to the “Student” object, but also
to redirect all references to the “Person” object – again causing a threat to system integrity.

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 7

firstName: String
lastName: String
dateOfBirth: Date

Person

matriculationNo: String

Student
socialSecNo: String
hoursPerWeek: Integer
salary: Real

Employee

"Henry"
"Henderson"
04-22-78

p1: Person

"Amanda"
"Anderson"
10-12-82

p2: Person

"Henry"
"Henderson"
04-22-78
"M-819372"

s1: Student
"Henry"
"Henderson"
04-22-78
"SN-582741773"
10
520.00

e1: Employee

"Amanda"
"Anderson"
10-12-82
"M-592661"

s2: Student

instance of specialized from

Figure 2: Illustration of intentional concept of class

Person

Student

Employee

p1 p2

se2
s1

Person

Student
Employee

e1s1
s2

extensional intensional

Figure 3: Illustration with sets

Raising the Level of Abstraction

8

2.2 Delegation

The intentional concept contributes to confusion and jeopardizes adaptability and integrity.

Therefore, the extensional concept seems a clearly better choice. However, when it comes to

building software, the intentional concept has the advantage that there is no mismatch be-

tween a conceptual model and the implementation. To reduce the negative impact of the

intentional concept of class, it is important that modellers and software developers are aware

of its counter-intuitive semantics. Delegation is a useful approach to address the limitations

of specialisation that result from an intentional concept of a class ((Lieberman 1986), (Frank

2000)). In a particular context, an object that serves as a role filler delegates its responsibilities

to an object that serves as one of its roles. For example: A student may be regarded as a role

of a person. Whenever an object of the role class “Student” receives a message that is not part
of its protocol, it would dispatch the message to its role filler. As a consequence, it would not

only “inherit” the properties of the class “Person”, but also the state of the corresponding

role filler object. The example in Figure 4 illustrates how to combine specialisation and dele-

gation.

0,1
Customer

Person

Abstract
Person

Company

Supplier

acts as

acts as
0,1

role of

specialisation of

Figure 4: Fostering comprehensibility and integrity through specialisation and delegation

3 Raising the Level of Abstraction

Classification allows for abstracting over a range of instances. To take advantage of similari-

ties between classes (or types), it can be useful to introduce a higher level of abstraction, i.e.

to define meta classes that specify the properties shared by a range of classes. A similar ap-

proach can be applied to the specification of a class of models of the same kind through meta

models. In principle, raising the level of classification is not limited to one meta level. Hence,

we need to account for meta meta classes, meta meta models etc., too. While these additional

meta layers can be very beneficial with respect to reuse and integrity, they create additional

complexity at first – and may make the decision between instantiation and specialisation

more demanding. So far, our consideration was mainly focussed on classes. Now, we will

explicitly include types and meta types, too, because for the specification of DSML one will

usually focus on types instead of classes. Nevertheless, we will use both abstractions widely

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 9

synonymously – with the main difference that classes other than types allow for user-defined

operations. In Logic, the notion of a type is coined by type theory which was proposed by

Russel and Whitehead to overcome the antinomy that Russel had discovered in Frege’s axi-

omatic foundation of set theory. In programming languages, type systems are essential for

checking the formal integrity of programs. In object-oriented programming languages, a

class is defined by its internal structure and a set of operations. The interface of a class de-

fines its type. Therefore, it is possible that a class may satisfy more than one type. While the

peculiarities of type theory and type systems are important for understanding the concept of

a class as it is used in software engineering and in conceptual modelling, differentiating

types and classes is of no specific value for our course of investigation.

3.1 “Fake” Instantiations

While there seems to be a wide consensus that a meta model is a model of a class of models,

the relationship between a meta model and corresponding models can be conceptualized in

different ways. Often, a model is regarded as an instance of a corresponding meta model.

According to this view, a meta model is instantiated into models. From a formal point of

view that means that all models that are syntactically and semantically correct can be gener-

ated from a meta model. According to Bézivin it is confusing to regard a meta model as a

model of other models: A model of something should provide a representation that provides

a reduction of complexity ((Bézivin 2003), p. 9 f.). Apparently, this not the case for a meta

model. While such an objection may seem reasonable at first sight, it is not convincing in the

end: A meta model is not a model of a particular model, but of an entire set of models.

Hence, it can very well reduce the complexity of dealing with the whole range of models.

Nevertheless, the idea that a meta model is instantiated into its models, i.e. that a model is an

instance of a corresponding meta model, is indeed not totally convincing. On the one hand, it

is somewhat misleading, because it suggests that creating a meaningful model from a meta

model is a well defined process that can be performed by a machine. However, this is usual-

ly not the case. Even for trivial meta models the number of possible models can be extremely

high, so that generating the entire range is no option. In addition to that, identifying mean-

ingful models will be much more demanding than it will often be for instances of a particular

class. Instead, instantiation in the case of modelling is rather a process of construction in con-

formance with the rules defined in the meta model. On the other hand, it happens on a regu-

lar base that the meta types used in meta models are based on formally incorrect classifica-

tions – which go along with “fake” instantiations. According to the notion of instantiation

that we used so far, instantiating a class means to create an object with features that are in-

stances of the properties defined for the corresponding class. However, frequently meta

types are used that include properties which are incorrect classifications of the respective

type features. Figure 5 shows two different instantiations of the type “Person” from the meta
types of a corresponding meta model. The example on the right shows a formally correct

instantiation, which, however, represents an instance that does not make much sense. The

Raising the Level of Abstraction

10

example on the left shows an instance that represents a valid type, which, however, results

from a formally incorrect instantiation. To justify the abstraction used in the meta model, one

could apply a more relaxed interpretation. In this case, one would regard “String” as an ab-

straction over the set of allowable types (or classes), i.e. as a placeholder for an extensional

representation such as “Character”, “Date”, “Integer” etc., each of which would serve as a
unique identifier of a certain type. To enable a formally correct instantiation of types, there

would be need for specifying a meta type that represents a classification of all intended

types.

name: String

Class
name: String
type: String

Attribute

firstName: String
lastName: String
dateOfBirth: Date

Person

firstName: "String"
lastName: "String"
dateOfBirth: "Date"

Person

1,1 0,*
meta types

types

Figure 5: Example of "fake" instantiation

As we shall see in the next section, there is a further reason why it may be inappropriate to

regard a model as an instance of a meta model.

3.2 Multi-Level Instantiation/Specialisation

So far, our consideration of instantiation and specialisation was restricted to two levels of

abstraction, i.e. to instances and classes or types respectively. Although the distinction be-

tween the two concepts may be confusing sometimes even on this level, there are clear rules

that support the decision. If we also account for concepts that describe a range of concepts,

i.e. meta concepts, those rules are not as clear anymore. For Frege the distinction of object

(“Gegenstand”) and concept (“Begriff”) was essential to structure the use of language.

Thereby an object is regarded as falling within a concept and being characterized by a proper

name – in other word: something that exists and that is not an abstraction over other existing

entities. That does not mean, however, that the distinction between object and concept is triv-

ial (for a discussion on the difficulties in identifying the “being” see (Quine 1953)). In ad-

vanced object-oriented languages, there is no clear distinction by definition: An object is an

instance of a class. At the same time, a class is regarded as an object, too, i.e. it has specific

attributes and methods that are not available on the instance-level.

The example shown in Figure 6 illustrates that with more than two levels of abstraction the

decision between instantiation and specialisation can become very demanding. The directed

edges represent only that one concept is regarded to be more specific than the one above.

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 11

„is a“

Peripheral Device

Printer

Laser Printer

CPL-844

p: CPL-844S
Serial no.: 938227

1

2

3

4

Figure 6: Multiple levels of abstraction

To analyse the question whether specialisation or instantiation is more appropriate – or

whether there is even need for further concepts, we consider possible representations of

“Device” and “Printer” (see Figure 7).

model: String
firstProduced: Date
pagePerMinute: Integer
resolution: Resolution
type: <Laser, Inkjet>
revenues: Real

Printer

name: String

Device
name: String
type: Type

Feature

1,1 0,*

part of

model: String
capacity: Integer
transferRate: Integer
firstProduced: Date
revenues: Real

Harddisk Drive

Figure 7: Possible representation of selected concepts

Apparently, “Printer” and “Harddisk Drive” are instances of “Device” and “Feature” respec-

tively: Each attribute of both concepts is instantiated from attributes of the superior classes.

However, an alternative representation is possible, too (see Figure 8).

Raising the Level of Abstraction

12

pagePerMinute: Integer
resolution: Resolution
type: <Laser, Inkjet>

Printer

model: String
firstProduced: Date
revenues: Real

Device

capacity: Integer
transferRate: Integer

Harddisk Drive

Figure 8: Alternative representation

In this case, “Printer” and “Harddisk Drive” would obviously qualify as specialisations of

“Device”. Hence, this example illustrates that the same result can be produced through in-

stantiation and specialisation, if the superior class is adapted accordingly. At the same time,

it stresses the question, which alternative is more appropriate. To add to the confusion, we

will first show each specialisation includes an implicit instantiation, too. If a class is special-

ised from an existing class, this will result in creating a new class. In the above example, spe-

cialisation results in two new classes, namely “Printer” and “Harddisk Drive”. At the same
time, both new classes were created through an act of instantiation: They were instantiated

from one or more meta classes. In the example shown in Figure 9 this is illustrated for the

class “Printer” only, which is instantiated from the meta classes “Class” and “Property”.

pagePerMinute: Integer
resolution: Resolution
type: <Laser, Inkjet>

Printer

model: String
firstProduced: Date
revenues: Real

Device

capacity: Integer
transferRate: Integer

Harddisk Drive

name: String

Class
name: String
type: Type

Property

1,1 0,*

part of

Figure 9: Implicit instantiation

Using a similar perspective, however focussing on instantiation alone, Atkinson and Kühne

consider a constellation they refer to as “ambiguous classification” ((Atkinson and Kühne

2001), p. 21). It seems that there are two alternative classifications for each class and each

instance. In a later publication Kühne gives the example shown in Figure 11 to illustrate the

problem.

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 13

Collie

„Lassie“

Class

Object

instance of

Figure 10: Illustration of "ambiguous classification" – adapted from ((Kühne 2006), p. 378)

It seems confusing that “Lassie” is an instance both of the classifier “Collie” and the classifier
“Object”. To dissolve the confusion, Kühne suggests differentiating two kinds of instantia-

tion. “Ontological instantiation between two elements or models is therefore based on the

relationship between them in terms of their meaning.” ((Kühne 2006), p. 377) Apparently,

Kühne thinks of meaning being created by references to "the original system". In other

words: An ontological instance should refer to an element that is "in the extension of the con-

cept referenced by the type." The concept is supposed to be defined intentionally. "Linguis-

tic" instantiation on the other hand is based on an extensional concept of class, which is to

express that the concept does not express the meaning of the corresponding instances: "..

linguistic instantiation concerns the form of elements themselves, as opposed to their content

(and meaning respectively) as is the case with ontological instantiation." (p. 377). An example

would be instantiating the concept "Collie" from "Class", or "Lassie" from "Object".

While pointing at what he calls “ambiguous classification” is important with respect to clari-

fy potential confusion, Kühne’s conclusions are not entirely convincing. First, the differentia-

tion of “ontological” and “linguistic” is misleading for various reasons. On the one hand,
both are orthogonal. Every “ontological” concept requires a linguistic representation. Oth-

erwise we cannot express it – independent from the philosophical question whether ontolog-

ical categories can exist without language. A linguistic expression may or may not represent

an ontological category. On the other hand, terms such as “class” or “object” that Kühne as-

signs to “linguistic instantiation” are typical examples for philosophical ontologies (as the
one suggested by Bunge). Also, a term like “Collie” represents a linguistic concept, i.e. it is
part of a language. Second, and more important, the differentiation seems to be based on a

misconception. If we look at a model where “Lassie” is represented as an instance of “Col-

lie”, then we deal with classes and objects only. “Collie” is a particular class – not instantiat-

ed from a class (and an object at the same time!) – with the “name” property instantiated to
“Collie” – i.e. it is instantiated from a metaclass. This particular class is then instantiated into

an object with the name property instantiated to “Lassie”. Hence, the terms as “class” and
“object” are terms of a meta language that enable us to speak about language – and to classi-

fy language elements.

An Attempt to Structure the Problem

14

Collie

„Lassie“

Class

Object

ontological
linguistic

Figure 11: "Ontological" vs. "linguistic" instantiation (adapted from (Kühne 2006), p. 10)

Kühne’s example nevertheless shows that there is need to distinguish between language and
language application. While this distinction may contribute to a more elaborate understand-

ing of instantiation – and specialisation respectively, it does not help much with the decision

between instantiation and specialisation.

4 An Attempt to Structure the Problem

Our further considerations to clarify this problem focus on properties and features of classes

and meta-level classes. They also account for the peculiarities of relationships between con-

cepts on different levels of abstraction. Frege makes a difference between first-order concepts

and second-order concepts – and emphasizes that the relationship between an object and a

first-order concept is similar, but different from the relationship between a first-order and a

second-order concept. In the first case, he speaks of an object falling under a concept (“ein
Gegenstand falle unter einen Begriff”, (Frege 1892), p. 201). In the second case, he uses the

phrase of a concept falling into a second-order concept (“ein Begriff falle in einen Begriff
zweiter Stufe”, ibid). Unfortunately, Frege’s distinction is of limited use for our investigation

only, since it is based on a clear differentiation of objects and classes. However, for our pur-

pose, classes are regarded as objects, too.

4.1 Properties and Features

To develop criteria that support a respective decision, we consider two classes (or meta clas-

ses respectively) Ca and Cb. We assume that Ca is regarded to represent a higher level of ab-

straction than Cb, where it is not clear at first whether it is a meta class or a superclass of Cb.

To analyse this question in more detail, it makes sense to first define all properties that Ca

should have for the intended purpose. In a next step, one would check for each property

whether Cb should inherit them, i.e. should have exactly the same properties or whether in-

tended properties of Cb should be instantiated from respective properties of Ca. To develop a

heuristic to support a respective decision, we distinguish between different kinds of class

properties and features – inspired by Frege’s distinction of “Merkmal” (property) and “Ei-

genschaft” (feature). A feature is an instantiation of a corresponding property. For this pur-

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 15

pose we consider classes as objects (i.e. not just as sets) that have features and properties.

There are three categories of class features and properties:

Class features: These are properties that serve to characterise a class and cannot be applied to

particular instances of a class.3 They are based on the conception of a class as an object with a

certain state. There are two kinds of class features. Note that class features are instantiated

from class properties defined on a higher level of abstraction.

a) Life-cycle features: Features that are characteristic for the class only and do not apply to

instances. For example: time when a class was created; times when modifications

took place. The class name falls into this category, too.

b) Derivable features: Features that apply to the class only, but depend on the correspond-

ing instance population. Examples include the number of instances at a certain point

in time, the average number of instances within a certain time frame or the average

value of certain instance properties. In addition to the direct instances of a class, the

relevant instance population may also include instances of subclasses. To avoid re-

dundancy, these features would usually be implemented with methods.

Since class features are characterised by class-specific values they can neither be inherited to

other classes nor instantiated. At the same time, they cannot be inherited from an upper-level

class. Instead, they can be instantiated from properties in an upper-level class only.

Class properties serve to characterize and differentiate specific instances. Properties are used

for the intentional definition of a class. A class property corresponds to a feature of corre-

sponding instances. Since an instance may be a class, a class feature may correspond to a

property of the respective meta class. For instance: The meta class “Class” may include the

property “created”, which is instantiated with each of its instances into a class feature. Class

properties can be inherited through specialisation.

Class invariants: These are constraints that apply to class properties. A class invariant is valid

for all instances, hence does not allow differentiating between instances. For example: the

restriction of an attribute’s value range, e.g. for representing employees’ salaries, the value of

a certain property, i.e. the power consumption of an electric appliance, or the dependence of

one property on another one – e.g. the sales price of a product has to be larger than the retail

price. Like class properties class invariants can be inherited through specialisation – which is

an implication of the substitutability constraint. They cannot be further instantiated.

4.2 An Example

In the following we apply the above categories to classes that correspond to the example in

Figure 6. We start by focussing on three levels only. We make the assumption that instantia-

3 This statement corresponds to Frege’s determination that – in a strict sense – propositions about concepts do not

apply to corresponding objects (ibid, p. 201).

An Attempt to Structure the Problem

16

tion and specialisation are mutually exclusive. Hence, if there are conflicting requirements, a

decision for one of the two has to be made.

For deciding whether Cb should be modelled as an instance of Ca or rather as a subclass, one

would first categorize all relevant features and properties of Ca. Note that assigning a feature

or property to one of these categories may require analysing the intended purpose of a con-

cept. In the next step, one needs to decide for properties of each category whether and how

they are expected to be used in Cb. The left part of Figure 12 shows a part of the concepts

presented in Figure 6. The attributes are assigned to the categories introduced above. The

diagram on the right shows a possible reconstruction using a specialisation and an instantia-

tion relationship. They cover the class (M1) and meta class layer (M2). Class features are

marked through a grey background.

<cp> pagePerMinute: Integer
<cp> firstProduced: Date
<cp> revenues: Real
<cp> model: String
<cp> resolution: Integer
<cp> defaultSalesPrice: Real

Printer

<cp> pagePerMinute: Integer
<cp> firstProduced: Date
<cp> revenues: Real
<cp> model: String
<cp> resolution: Integer
<cp> defaultSalesPrice: Real

LaserPrinter

<lf> firstProduced: 02-06-2012
<df> revenues: 89.000
<ci> pagePerMinute = 40
<ci> defaultSalesPricel = 199.00
<ci> resolution = 600

CPL-844

<cp> pagePerMinute: Integer
<cp> firstProduced: Date
<cp> revenues: Real
<cp> model: String
<cp> resolution: Integer
<cp> defaultSalesPrice: Real

Printer

LaserPrinter

2

3

<lf> firstProduced: 02-06-2012
<df> revenues: 89.000
<ci> pagePerMinute = 40
<ci> defaultSalesPrice = 199.00
<ci> resolution = 600

CPL-844

specialized from

instantiated from

M1

M2

<cp>: class property
<ci>: class invariant
<lf>: life-cycle feature
<df>: derivable feature

Figure 12: Partial reconstruction of multi-level hierarchy

While the model on the right seems to be appropriate for various purposes, it does not ac-

count for class features on the M2 layer. In case these are important, it has to be clarified

where the corresponding properties would be defined. Furthermore, the model does not

account for representing particular instances. In many cases a corresponding information

system would have to keep track of particular devices. However, the class “CPL-844” does

not allow for further instantiations. Figure 13 shows an extension of the previous model that

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 17

addresses both aspects. To allow for class features on the M2 layer, the corresponding meta

classes are instantiated from meta meta classes on an additional M3 layer, in this case from

“PeripheralDevice” and “Feature”. Enabling class properties for “CPL-844” which could be
instantiated into features of corresponding instances, such as a specific serial number, is

more demanding. It requires an additional (meta) concept. While “serial no” could be de-

fined with “Printer” (as an instantiation of “Feature”) or with “LaserPrinter” (as an extension
of inherited properties or – equivalently – as an instantiation of “Feature”), it would have to

be instantiated to a class feature within “CPL-844”, since “CPL-844” is modelled as an in-

stance of “LaserPrinter”. There are a few proposals that address this challenge such as “pow-

er types” (Odell 1998), “clabjects” (Atkinson and Kühne 2008) or “intrinsic features” (Frank

2011a). Intrinsic features are based on the assumption that conceptualising a meta meta class

does not only imply an imagination of its immediate instances, i.e. classes, but may also im-

ply an imagination of those classes’ instances. Hence, when conceptualising a meta class it

may be a good idea to already specify class properties that apply to lower level instances

only. The corresponding features would then be intrinsic to the concept of a meta class. In

the example shown in Figure 13 the concept of an intrinsic feature allows defining the prop-

erty “serial no” within “Printer” on the M2 layer. Power types and clabjects allow for repre-

senting this, too. However, they come with a slightly different ontological foundation. Also,

clabjects are more flexible, since they allow for defining a “potency” to specify on what level
a property is supposed to be instantiated. Further approaches to address the above challenge

include “m-objects” (Neumayr, Grün et al. 2009) and “materialization” (Olivé 2007) (for an

overview see: (Neumayr, Schrefl et al. 2011)).

The example in Figure 13 shows a comprehensive representation of the concepts in Figure 7.

Note that “LaserPrinter” does not inherit the values of the class features assigned to “Print-

er”. Instead, these features are instantiated from its corresponding meta class, i.e. “Peripher-

alDevice”. To evaluate this model one needs to account for its purpose. Let us assume we

want to build a system for supporting order management within a computer hardware deal-

ership. In case, order management is restricted to simply selling devices without the need for

giving technical advice, this model may be sufficient. One would have to evaluate whether

the meta class “LaserPrinter” is required, since it is not different from its superclass – except

for its state as an object. However, if the system should also include technical advice and

maybe the configuration of devices, the model is certainly not appropriate. In that case, the

concept of a printer should be described in more detail, allowing for clearly distinguishing

different kinds of printers.

An Attempt to Structure the Problem

18

<lf> created = 2012-03-10
<df> models = 14
<df> totalRevenues = 980.000
<cp> pagePerMinute: Integer
<cp> firstProduced: Date
<cp> revenues: Real
<cp> model: String
<cp> resolution: Integer
<cp> defaultSalesPrice: Real
<cp> inStock: Integer
<i> serialNo: String
<i> salesPrice: Real

Printer

<cp> name: String
<cp> type: Type
<cp> isIntrinsic: Boolean

Feature

1,1 0,*

part of
0,1

0,*

specialized from

<lf> firstProduced = 2012-06-02
<df> revenues = 89.000
<ci> pagePerMinute = 40
<ci> defaultSalesPrice = 199.00
<ci> resolution = 600
<df> inStock = 74
<cp> salesPrice: Real
<cp> serialNo: Real

CPL-844

salesPrice = 189.00
serialNo = ps32-3

ps32-3: CPL-844

M1

M2

M3

M0

<cp> name: String
<cp> created: Date
<cp> models: Integer
<cp> totalRevenues: Real

PeripheralDevice

instance of

<i>: intrinsic feature

Figure 13: Comprehensive representation of example using intrinsic features

The model shown in Figure 14 illustrates a corresponding representation using instantiation

only. Different from the previous model, it includes a conceptualisation of “Printer” that is
more elaborate in the sense that it describes what a concept called “printer” is composed of.
That does not mean, however, that classification in general results in more elaborate (meta)

concepts than generalisation.

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 19

<is> name: String
<is> type: Type

Feature

1,1 0,*

part of

<is> firstProduced: Date
<is> revenues: Real
<is> model: String
<is> defaultSalesPrice: Real

Printer

<a> name: String
<is> type: <InkJet, Laser>
<is> resolution: Integer
<is> pagePerMinute: Integer

Print-Unit

<is> WLAN: Boolean
<is> protocol: String

Network-Unit

<is> voltage: Integer
<is> adapter: <US, EUR>

PowerSupplyUnit

PeripheralDeviceComponent

<is> name: String

Device

1,1

1,*

part of

<a> firstProduced = 02-06-2012
 revenues = 89.000
<c> defaultSalesPrice = 199.00

CPL-844

<a> type = Laser
<c> resolution = 600
<c> pagePerMinute = 40

LP-Unit-26

<c> voltage: 220
<c> adapter: EUR

PowerSupply-PS98 <c> WLAN = true
<c> protocol = 802.11

LAN-MD-2

salesPrice: 189.00
serialNo = ps32-3

ps32-3: CPL-844

min: Multiplicity
max: Multiplicity

Aggregation

0,*

0,*

part of

part of

part of

1,1

0,1

0,1

M1

M2

M3

M0

Figure 14: Emphasis on instantiation

The difference between instantiation and specialisation is related to two aspects:

a) How can characteristics of the abstraction be (re-) used in a concretisation?

b) How can specific characteristics of the concretisation be defined?

Ad a): In the case of specialisation, all properties of the superior class are inherited, i.e. used

as they are defined in the superior class. This is different with instantiation where it is not

possible to use concepts defined in the superior class as they are.

An Attempt to Structure the Problem

20

Ad b): Specialisation allows only for specifying additional class properties. Instantiation al-

lows for instantiating class features and (additional) class properties.

The quality of classification versus generalisation depends chiefly on the semantics of the

respective meta class or superclass. The more useless concretisations (either specialisation or

instantiation) are possible, the lower the level of semantics. In this respect, both specialisation

and instantiation have specific strengths and shortcomings. While specialisation does not

allow excluding arbitrary extensions, classifications can restrict the number of possible in-

stantiations, i.e. classification allows for defining the permissible characteristics of all possi-

ble instantiations. The higher the level of semantics specified for a classification, i.e. the lower

the range of possible, however, useless instantiations, the higher is the quality of the corre-

sponding abstraction. On the other hand, the quality of generalisation depends on its seman-

tics, too. The semantics of a generalised class depends on the semantics of its property types

and the number of its properties. The more semantics a generalisation represents as invariant

commonality of the corresponding specialisation, the higher its contribution to reuse and

flexibility. Figure 15 shows the examples of a meta class and a superclass that incorporate

very little semantics only, i.e. there is only little value in the corresponding abstraction: any-

thing goes. Both cases result in widely the same set of possible concretisations.

name: String

Device

pagePerMinute: Integer
defaultSalesPrice: Real
resolution: Integer

Printer

name: String
type: Type

Feature

1,1 0,*

part of

size: Integer
defaultSalesPrice: Real
pixHorizontal: Integer
pixVertical: Integer

Screen

defaultSalesPrice: String

Device

pagePerMinute: Integer
resolution: Integer

Printer
size: Integer
pixHorizontal: Integer
pixVertical: Integer

Screen

Figure 15: Examples of low quality abstractions

To illustrate the criteria that are to be accounted for when deciding between instantiation

and specialisation we consider a concretisation (either specialized or instantiated class) and

differentiate its properties/features according to the above proposal.

 Request for concretisation Implication

1 representation of class features (lf, df) instantiation only

2 reuse of properties as they are specialisation only

3 specification of further characteristics

 a) arbitrary both

 b) restricted instantiation only

Table 4: Criteria for deciding between instantiation and specialisation

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 21

As the examples from Figure 12 to Figure 14 show, there are cases that demand for both in-

stantiation and specialisation. In the worst case, i.e. if both specialisation and instantiation

seem mandatory, the resulting conflict creates a dilemma.

5 Preliminary Conclusions

Our previous considerations lead to a number of conjectures some of which recommend re-

vising wide-spread assumptions.

The decision between instantiation and specialisation can be a serious challenge. As long as one

deals with the M0 and M1 layer only, the decision between instantiation and specialisation is

fairly easy. However, if more levels of abstraction need to be accounted for, this decision

may face the dilemma that there are good reasons for both choosing instantiation and spe-

cialisation. The problem is attributed to treating classes as objects of corresponding meta

classes. As a consequence, a class may have both instantiated features (class as object) and

properties that are instantiated only with its instances.

The distinction between instantiation and specialisation should not be abandoned. The fact that in

some cases a clear decision for one of the two is not possible could be used as an argument for

giving up the distinction between instantiation and specialisation. The difficulties in differen-

tiating both concepts are rather an argument for a aiming at a clear separation than against it.

If we gave up the differentiation, which is arguable one of the major accomplishments of

modern Logic, this would be a step back resulting in a loss of analytic power (Kühne 2009).

There is urgent need for additional abstractions to overcome the respective decision conflict. It is

widely impossible to create meta models that represent the intended semantics, if there is no

chance to somehow combine instantiation and specialisation. Therefore, abstractions that

address this issue, such as clabjects, powertypes, intrinsic features, materialization or m-

objects are mandatory for meta modelling languages.

A strict separation of abstraction levels is often not possible. The language hierarchy referred to as

M0 to M3 as it became popular mainly by the OMG suggests that there is a clear difference

between linguistic levels of abstraction, which is defined by classification/instantiation rela-

tionships. By regarding (meta) classes as objects and through the use of additional abstrac-

tions such as clabjects, the distinction of abstraction layers becomes blurry. However, that

does not mean that differentiating levels of linguistic abstraction is in general inappropriate.

It is still important as an analytical measure to provide an orientation for interpreting mod-

els. Only, one should be aware of possible intrinsic overloading.

Four levels of abstraction are not necessarily sufficient. Modelling languages and corresponding

tools require a language architecture. It includes the meta models that define modelling lan-

guages and it may also include the specification of the corresponding meta modelling lan-

guages through a meta meta model. Therefore, language architectures often distinguish four

Preliminary Conclusions

22

levels of abstraction starting with M0 – which is usually not relevant for conceptual model-

ling, but provides a common ground, and going up to M3, which represents the meta meta

model. The examples in Figure 13 and Figure 14 indicate that it can be useful to introduce

further levels of abstraction.

Thoughts on Classification / Instantiation and Generalisation / Specialisation

 23

References

Atkinson, C. and T. Kühne (2001). The Essense of Multilevel Metamodeling. «UML» 2001 —

The Unified Modeling Language. Modeling Languages, Concepts, and Tools, Springer: 19-33.

Atkinson, C. and T. Kühne (2008). "Reducing accidental complexity in domain models."

Software and Systems Modeling: 345-359

Bézivin, J. (2003). On the Unification Power of Models. Nantes.

Frank, U. (2000). "Delegation: An Important Concept for the Appropriate Design of Object

Models." Journal of Object-Oriented Programming 13(3): 13-18.

Frank, U. (2011a). The MEMO Meta Modelling Language (MML) and Language Architec-

ture. ICB Research Report. Essen, University Duisburg-Essen.

Frank, U. (2011b). Multi-Perspective Enterprise Modelling: Background and Terminological

Foundation. ICB Research Report, University Duisburg-Essen.

Frege, G. (1892). "Über Begriff und Gegenstand." Vierteljahresschrift für wissenschaftliche

Philosophie 16: 192-205.

Kühne, T. (2006). "Matters of (Meta-) Modeling." 5(4): 369-385.

Kühne, T. (2009). Contrasting Classification with Generalisation. APCCM 2009: 71-78.

Lieberman, H. (1986). Using Prototypical Objects to Implement Shared Behavior in Object

Oriented Systems. Proceedings of First ACM Conference on Object-Oriented Programming

Systems, Languages and Applications. Portland: 214-223.

Neumayr, B., K. Grün, et al. (2009). Multi-Level Domain Modeling with M-Objects and M-

Relationships. Proceedings of the 6th Asia-Pacific Conference on Conceptual Modeling

(APCCM). S. Link and M. Kirchberg. Wellington, Australian Computer Society: 107-116.

Neumayr, B., M. Schrefl, et al. (2011). Modeling Techniques for Multi-level Abstraction. The

Evolution of Conceptual Modeling. From a Historical Perspective towards the Future of

Conceptual Modeling. R. Kaschek and L. Delcambre. Berlin, Heidelberg, Springer: 68–92.

Odell, J. (1998). Power Types. Advanced Object-Oriented Analysis and Design Using UML. J.

Odell. Cambridge, Cambridge University Press: 23-33.

Olivé, A. (2007). Conceptual Modeling of Information Systmes. Berlin, Heidelberg, New

York, Springer.

Quine, W. V. O. (1953). On What There Is. From a Logical Point of View. W. V. O. Quine.

Boston, Harvard University Press: 1-19.

Wolters, G. (1996). Subordination. Enzyklopädie Philosophie und Wissenschaftstheorie. J.

Mittelstraß. Stuttgart, Weimar, Metzler. 4: 132.

Previously published ICB - Research Reports

2012

No 52 (July 2012)

Berntsson Svennson, Richard; Berry, Daniel; Daneva, Maya; Dörr, Jörg; Frickler, Samuel A.;

Herrmann, Andrea; Herzwurm, Georg; Kauppinen, Marjo; Madhavji, Nazim H.; Mahaux, Martin;

Paech, Barbara; Penzenstadler, Birgit; Pietsch, Wolfram; Salinesi, Camile; Schneider, Kurt; Seyff, Norb-

ert; van de Weerd, Inge (Eds): “18th International Working Conference on Requirements Engineering:

Foundation for Software Quality. Proceedings of the Workshops Re4SuSy, REEW, CreaRE, RePriCo,

IWSPM and the Conference Related Empirical Study, Empirical Fair and Doctoral Symposium“

No 51 (May)

 Frank, Ulrich: “Specialisation in Business Process Modelling: Motivation, Approaches and Limitations”

No 50 (March)

 Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz, Philipp; Schütz,

Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-Studien – Eine Metastudie zu

serviceorientierten Architekturen”

2011

No 49 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (2): Focus on Business Processes”

No 48 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (1): Focus on Organisational Structure”

No 47 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (OrgML): Requirements and Core Diagram

Types”

No 46 (December 2011)

 Frank, Ulrich: “Multi-Perspective Enterprise Modelling: Background and Terminological Foundation”

No 45 (November 2011)

 Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur Er-

stellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)

Berenbach, Brian; Daneva, Maya; Dörr, Jörg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;

Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,

Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for

Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and

RePriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair),

and the REFSQ 2011 Doctoral Symposium“

No 43 (February 2011)

 Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Lnguage Architecture – 2nd Edi-

tion”

2010

No 42 (December)

 Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”

No 41 (December)

 Adelsberger,Heimo; Drechsler, Andreas (Eds): “Ausgewählte Aspekte des Cloud-Computing aus einer

IT-Management-Perspektive – Cloud Governance, Cloud Security und Einsatz von Cloud Computing

in jungen Unternehmen”

No 40 (October 2010)

Bürsner, Simone; Dörr, Jörg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;

Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):

“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-

ty. Proceedings of the Workshops CreaRE, PLREQ, RePriCo and RESC“

No 39 (May 2010)

Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption für den Studien-

gang M.Sc. Wirtschaftsinformatik an der Fakultät für Wirtschaftswissenschaften der Universität Duis-

burg-Essen“

No 38 (February 2010)

Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschätzungen von CIOs und

WI-Professoren“

No 37 (January 2010)

Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-

ity Modelling of Software-intensive Systems”

2009

No 36 (December 2009)

Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verständnis der IT-Governance - An-

regungen zu einer kritischen Reflexion”

No 35 (August 2009)

Rüngeler, Irene; Tüxen, Michael; Rathgeb, Erwin P.:“Considerations on Handling Link Errors in

STCP“

No 34 (June 2009)

Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on

Service Monitoring, Adaption and Beyond”

No 33 (May 2009)

Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-

ger, Jan; Rosenberger, Marcel; Trepper, Tobias: „Einsatz von Social Software in Unternehmen – Studie

über Umfang und Zweck der Nutzung“

No 32 (April 2009)

Barth, Manfred; Gadatsch, Andreas; Kütz, Martin; Rüding, Otto; Schauer, Hanno; Strecker, Stefan:

„Leitbild IT-Controller/-in – Beitrag der Fachgruppe IT-Controlling der Gesellschaft für Informatik

e. V.“

No 31 (April 2009)

Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-

tems – Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)

Schauer, Hanno; Wolff, Frank: „Kriterien guter Wissensarbeit – Ein Vorschlag aus dem Blickwinkel der

Wissenschaftstheorie (Langfassung)“

No 29 (January 2009)

Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-

iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)

Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming

Exercises with JACK“

No 27 (December 2008)

Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im

deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)

Milen, Tilev; Bruno Müller-­‐‑Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)

Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am

Beispiel der CRC Card-Methode”

No 24 (August 2008)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised

Version”

No 23 (January 2008)

Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an

Approach Supporting Production Planning”

No 22 (January 2008)

Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International

Workshop on Variability Modelling of Software-intensive Systems"

2007

No 21 (September 2007)

Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-management-

Kreislauf"

No 20 (August 2007)

Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"ʺ

No 19 (June 2007)

Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ‚Relevance

Debate’

No 18 (May 2007)

Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der

Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)

Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of

Model Curricula”

No 16 (May 2007)

Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-

pacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals – Analyse

und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)

Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für Soft-

warearchitekturen”

No 13 (February 2007)

Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter

Architekturen”

No 12 (February 2007)

Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to

Markovian Process Algebras”

No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des

IT-Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)

Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der

Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)

Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des wissen-

schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein Forschungspro-

gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)

Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-

search”

No 6 (April 2006)

Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)

Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part III – Results

Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys-

tems Discipline”

No 2 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and

Method”

No 1 (August 2005)

Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -methoden in

Wirtschaftsinformatik und Information Systems“

!"#$%&'&(%")*%&+,%-

!"#
!"#$%$&$'()*'!"(+*,-$%.'&"/
0%*$#12-($#%"(+*,-$%.

Ulrich Frank

ICB-Research Report No. 53

December 2012

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Klüver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

For more information visit us on the Web: http://www.icb.uni-due.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

53Thoughts on Instanciation and Specialisation

	DocumentServlet-1.537.185.554.732
	ICB-Report-No53

